Tonewheel

Last updated
Diagram of how a tonewheel works Tonewheel-p.svg
Diagram of how a tonewheel works
Goldschmidt tone wheel (1910), used as an early beat frequency oscillator Goldschmidt tone wheel.jpg
Goldschmidt tone wheel (1910), used as an early beat frequency oscillator

A tonewheel or tone wheel is a simple electromechanical apparatus for generating electric musical notes in electromechanical organ instruments such as the Hammond Organ. It was invented around 1910[ citation needed ] by Rudolph Goldschmidt and was first used in pre vacuum tube radio receivers as a beat frequency oscillator (BFO) to make continuous wave radiotelegraphy (Morse code) signals audible.

Musical note sign used in musical notation, a pitched sound

In music, a note is the pitch and duration of a sound, and also its representation in musical notation. A note can also represent a pitch class. Notes are the building blocks of much written music: discretizations of musical phenomena that facilitate performance, comprehension, and analysis.

Vacuum tube Device that controls electric current between electrodes in an evacuated container

In electronics, a vacuum tube, an electron tube, or valve or, colloquially, a tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

Contents

Description

The tonewheel assembly consists of a synchronous AC motor and an associated gearbox that drives a series of rotating disks. Each disk has a given number of smooth bumps at the rim; these generate a specific frequency as the disk rotates close to a pickup assembly that consists of a magnet and electromagnetic coil. [footnotes 1]

Electric motor electromechanical device

An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and winding currents to generate force in the form of rotation. Electric motors can be powered by direct current (DC) sources, such as from batteries, motor vehicles or rectifiers, or by alternating current (AC) sources, such as a power grid, inverters or electrical generators. An electric generator is mechanically identical to an electric motor, but operates in the reverse direction, accepting mechanical energy and converting this mechanical energy into electrical energy.

Transmission (mechanics) machine in a power transmission system for controlled application of the power;gearbox,uses gears/gear trains to provide speed,torque conversions from a rotating power source to another device;reduces the higher engine speed to the slower wheel speed

A transmission is a machine in a power transmission system, which provides controlled application of the power. Often the term transmission refers simply to the gearbox that uses gears and gear trains to provide speed and torque conversions from a rotating power source to another device.

Magnet material or object that produces a magnetic field

A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, and attracts or repels other magnets.

As each bump in the wheel approaches the pickup, it temporarily concentrates the magnetic field near it, and thus strengthens the magnetic field that passes through the coil, inducing a current in the coil by the process of electromagnetic induction. As the bump moves past, this concentrating effect is reduced again, the magnetic field weakens slightly, and an opposite current is induced in the coil. Thus, the frequency of the current in the coil depends on the speed of rotation of the disk and the number of bumps.

Electromagnetic induction production of voltage by a varying magnetic field

Electromagnetic or magnetic induction is the production of an electromotive force across an electrical conductor in a changing magnetic field.

Rheotome-cylinders and electric-brushes used on Telharmonium (1896) US580035A Thaddeus Cahill, Telharmonium patent p.04.jpg
Rheotome-cylinders and electric-brushes used on Telharmonium (1896)

Typically, the coil is connected to an amplifier through a network of switches, contacts, resistor banks, and transformers which can be used to mix the fluctuating current representing the note from one coil with similar currents from other coils representing other notes. A single fundamental frequency can thus be combined with one or more harmonics to produce complex sounds. Tonewheels were first developed for and used in the Telharmonium [ citation needed ] circa 1896 [1] and later in the original Hammond organs.

Fundamental frequency Lowest frequency of a periodic waveform, such as sound

The fundamental frequency, often referred to simply as the fundamental, is defined as the lowest frequency of a periodic waveform. In music, the fundamental is the musical pitch of a note that is perceived as the lowest partial present. In terms of a superposition of sinusoids, the fundamental frequency is the lowest frequency sinusoidal in the sum. In some contexts, the fundamental is usually abbreviated as f0, indicating the lowest frequency counting from zero. In other contexts, it is more common to abbreviate it as f1, the first harmonic.

Since the fundamental is the lowest frequency and is also perceived as the loudest, the ear identifies it as the specific pitch of the musical tone [harmonic spectrum]....The individual partials are not heard separately but are blended together by the ear into a single tone.

Telharmonium type of electronic organ

The Telharmonium was an early electrical organ, developed by Thaddeus Cahill circa 1896 and patented in 1897. The electrical signal from the Telharmonium was transmitted over wires; it was heard on the receiving end by means of "horn" speakers.

Hammond organ electric organ

The Hammond organ is an electric organ, invented by Laurens Hammond and John M. Hanert and first manufactured in 1935. Various models have been produced, most of which use sliding drawbars to specify a variety of sounds. Until 1975, Hammond organs generated sound by creating an electric current from rotating a metal tonewheel near an electromagnetic pickup, and then strengthening the signal with an amplifier so it can drive a speaker cabinet. Around two million Hammond organs have been manufactured. The organ is commonly used with, and associated with, the Leslie speaker.

Tonewheel leakage occurs in the Hammond organ and in similar situations, where the large number of tonewheels causes pickups to overhear tonewheels other than their own. This causes the organ to add chromatics to played notes. In some kinds of music this is undesirable, but in others it has become an important part of the Hammond sound. On some digital simulations of Hammond organs tonewheel leakage is a user-set parameter.

The chromatic scale is a musical scale with twelve pitches, each a semitone above or below its adjacent pitches. As a result, in 12-tone equal temperament, the chromatic scale covers all 12 of the available pitches. Thus, there is only one chromatic scale.

Early uses

The tonewheel was invented in 1910[ citation needed ] by Rudolph Goldschmidt as a beat frequency oscillator in early radio receivers to make continuous wave radiotelegraphy (Morse code) signals audible.

Radio receiver radio device for receiving radio waves and converting them to a useful signal

In radio communications, a radio receiver, also known as a receiver, wireless or simply radio is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information. The receiver uses electronic filters to separate the desired radio frequency signal from all the other signals picked up by the antenna, an electronic amplifier to increase the power of the signal for further processing, and finally recovers the desired information through demodulation.

A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, almost always a sine wave, that for mathematical analysis is considered to be of infinite duration. Continuous wave is also the name given to an early method of radio transmission, in which a sinusoidal carrier wave is switched on and off. Information is carried in the varying duration of the on and off periods of the signal, for example by Morse code in early radio. In early wireless telegraphy radio transmission, CW waves were also known as "undamped waves", to distinguish this method from damped wave signals produced by earlier spark gap type transmitters.

Morse code Transmission of language with brief pulses

Morse code is a character encoding scheme used in telecommunication that encodes text characters as standardized sequences of two different signal durations called dots and dashes or dits and dahs. Morse code is named for Samuel F. B. Morse, an inventor of the telegraph.

See also

Notes

  1. This is electrically and magnetically similar to a guitar pickup, in that a permanent magnet is placed within the coil and the moving element is unmagnetized. Unlike most generators or dynamos, there is no external field applied through the moving part.

Related Research Articles

Electromagnetic coil electrical component

An electromagnetic coil is an electrical conductor such as a wire in the shape of a coil, spiral or helix. Electromagnetic coils are used in electrical engineering, in applications where electric currents interact with magnetic fields, in devices such as electric motors, generators, inductors, electromagnets, transformers, and sensor coils. Either an electric current is passed through the wire of the coil to generate a magnetic field, or conversely an external time-varying magnetic field through the interior of the coil generates an EMF (voltage) in the conductor.

Electric generator device that converts other energy to electrical energy

In electricity generation, a generator is a device that converts motive power into electrical power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all of the power for electric power grids.

Humbucker pickup design

A humbucking pickup, humbucker, or double coil, is a type of electric guitar pickup that uses two coils to "buck the hum" picked up by coil pickups caused by electromagnetic interference, particularly mains hum. Most pickups use magnets to produce a magnetic field around the strings, and induce an electrical current in the surrounding coils as the strings vibrate. Humbuckers work by pairing a coil with the north poles of its magnets oriented "up", with another coil right next to it, which has the south pole of its magnets oriented up. By connecting the coils together out of phase, the interference is significantly reduced via phase cancellation: the string signals from both coils add up instead of canceling, because the magnets are placed in opposite polarity. The coils can be connected in series or in parallel in order to achieve this hum-cancellation effect, although it's much more common for the coils of a humbucker pickup to be connected in series. In addition to electric guitar pickups, humbucking coils are sometimes used in dynamic microphones to cancel electromagnetic hum.

Magnetic cartridge electromechanical transducer used in the playback of records

A magnetic cartridge, more commonly called a phonograph cartridge or phono cartridge or (colloquially) a pickup, is an electromechanical transducer that is used to play records on a turntable.

Electrodynamic suspension

Electrodynamic suspension (EDS) is a form of magnetic levitation in which there are conductors which are exposed to time-varying magnetic fields. This induces eddy currents in the conductors that creates a repulsive magnetic field which holds the two objects apart.

Beat frequency oscillator device to convert Morse code radio signals into audible tones

In a radio receiver, a beat frequency oscillator or BFO is a dedicated oscillator used to create an audio frequency signal from Morse code radiotelegraphy (CW) transmissions to make them audible. The signal from the BFO is mixed with the received signal to create a heterodyne or beat frequency which is heard as a tone in the speaker. BFOs are also used to demodulate single-sideband (SSB) signals, making them intelligible, by essentially restoring the carrier that was suppressed at the transmitter. BFOs are sometimes included in communications receivers designed for short wave listeners; they are almost always fitted to amateur radio station receivers, which often receive CW and SSB signals.

Pickup (music technology) transducer that captures or senses mechanical vibrations produced by musical instruments

A pickup is a transducer that captures or senses mechanical vibrations produced by musical instruments, particularly stringed instruments such as the electric guitar, and converts these to an electrical signal that is amplified using an instrument amplifier to produce musical sounds through a loudspeaker in a speaker enclosure. The signal from a pickup can also be recorded directly.

Electric bell mechanical bell that functions by means of an electromagnet

An electric bell is a mechanical bell that functions by means of an electromagnet. When an electric current is applied, it produces a repetitive buzzing or clanging sound. Electric bells have been widely used at railroad crossings, in telephones, fire and burglar alarms, as school bells, doorbells, and alarms in industrial plants, since the late 1800s, but they are now being widely replaced with electronic sounders. An electric bell consists of one or more electromagnets, made of a coil of insulated wire around an iron core, which attract a springy iron armature with a clapper. When an electric current flows through the coils, the electromagnet creates a magnetic field which pulls the armature towards it, causing the clapper to strike the bell.

Clonewheel organ

"Clonewheel organ" is a musician jargon term used to refer to an electronic musical instrument that emulates the sound of the electromechanical tonewheel-based organs formerly manufactured by Hammond from the 1930s to the 1970s. Clonewheel organs generate sounds using solid-state circuitry or computer chips, rather than with heavy mechanical tonewheels, making clonewheel organs much lighter-weight and smaller than vintage Hammonds, and easier to transport to live performances and recording sessions.

Magnetic detector

The magnetic detector or Marconi magnetic detector, sometimes called the "Maggie", was an early radio wave detector used in some of the first radio receivers to receive Morse code messages during the wireless telegraphy era around the turn of the 20th century. Developed in 1902 by radio pioneer Guglielmo Marconi from a method invented in 1895 by New Zealand physicist Ernest Rutherford it was used in Marconi wireless stations until around 1912, when it was superseded by vacuum tubes. It was widely used on ships because of its reliability and insensitivity to vibration. A magnetic detector was part of the wireless apparatus in the radio room of the RMS Titanic which was used to summon help during its famous 15 April 1912 sinking.

An inductive sensor is a device that uses the principle of electromagnetic induction to detect or measure objects. An inductor develops a magnetic field when a current flows through it; alternatively, a current will flow through a circuit containing an inductor when the magnetic field through it changes. This effect can be used to detect metallic objects that interact with a magnetic field. Non-metallic substances such as liquids or some kinds of dirt do not interact with the magnetic field, so an inductive sensor can operate in wet or dirty conditions.

A tikker, alternately spelled ticker, was a vibrating interrupter used in early wireless telegraphy radio receivers such as crystal radio receivers in order to receive continuous wave (CW) radiotelegraphy signals.

In electrical engineering, electric machine is a general term for machines using electromagnetic forces, such as electric motors, electric generators, and others. They are electromechanical energy converters: an electric motor converts electricity to mechanical power while an electric generator converts mechanical power to electricity. The moving parts in a machine can be rotating or linear. Besides motors and generators, a third category often included is transformers, which although they do not have any moving parts are also energy converters, changing the voltage level of an alternating current.

Goldschmidt alternator

The Goldschmidt alternator or reflector alternator, invented in 1908 by German engineer Rudolph Goldschmidt, was a rotating machine which generated radio frequency alternating current and was used as a radio transmitter. Radio alternators like the Goldschmidt were some of the first continuous wave radio transmitters. Like the similar Alexanderson alternator, it was used briefly around World War I in a few high power longwave radio stations to transmit transoceanic radiotelegraphy traffic, until the 1920s when it was made obsolete by vacuum tube transmitters.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

Electromagnetically excited acoustic noise is audible sound directly produced by materials vibrating under the excitation of electromagnetic forces. Some examples of electromagnetically excited acoustic noise include the hum of transformers, the whine of some rotating electric machines, or the buzz of fluorescent lamps. The hissing of high voltage transmission lines is due to corona discharge, not magnetism.

References

  1. USpatent 580035,Thaddeus Cahill,"Art of and apparatus for generating and distributing music electrically",issued 1897-04-06, filed 1896-02-04.