Torque multiplier

Last updated
Epicyclic gearing can be used in a torque multiplier. The sun gear (yellow) is driven by an input torque. The planet gear carrier (green) provides the output torque, while the ring gear (red) is fixed. Note the red marks both before and after the input drive (yellow) is rotated 170deg clockwise. Epicyclic gear ratios.png
Epicyclic gearing can be used in a torque multiplier. The sun gear (yellow) is driven by an input torque. The planet gear carrier (green) provides the output torque, while the ring gear (red) is fixed. Note the red marks both before and after the input drive (yellow) is rotated 170° clockwise.

A torque multiplier is a tool used to provide a mechanical advantage in applying torque to turn bolts, nuts or other items designed to be actuated by application of torque, particularly where there are relatively high torque requirements.

Contents

Description

Torque multipliers are often used instead of extended handles, often called "cheater bars". Extended handles use leverage instead of gear reduction to achieve torque. This torque is transmitted through the driving tool and could become dangerous in the case of a sudden catastrophic failure of the drive tool with the extended handle attached. Torque multipliers only have a fraction of the final torque pressure on the drive tool making them a safer choice.

Torque multipliers typically employ an epicyclic gear train having one or more stages. Each stage of gearing multiplies the torque applied. In epicyclic gear systems, torque is applied to the input gear or ‘sun’ gear. A number of planet gears are arranged around and engaged with this sun gear, and therefore rotate. The outside casing of the multiplier is also engaged with the planet gear teeth, but is prevented from rotating by means of a reaction arm, causing the planet gears to orbit around the sun gear. The planet gears are held in a ‘planet carrier' which also holds the output drive shaft. As the planet gears orbit around the sun gear, the carrier and the output shaft rotate together. Without the reaction arm to prevent rotation of the outer casing, the output shaft cannot apply torque. [1] [2]

Along with the multiplication of torque, there is a decrease in rotational speed of the output shaft compared to the input shaft. This decrease in speed is inversely proportional to the increase in torque. For example, a torque multiplier with a rating of 3:1 will turn its output shaft with three times the torque, but at one third the speed, of the input shaft. However, due to friction and other inefficiencies in the mechanism, the output torque is slightly lower than the theoretical output.

Applications

Torque multipliers are most often used when a compressed air powered impact wrench is unavailable due to remote locations without power, or where cost considerations require manually operated tools which do not require any power supply or power source of any kind. There are many instances where screws, bolts and other fasteners are secured so tightly that using a typical lug wrench with a cheater bar is not sufficient to loosen them. These include automotive repair, product assembly, construction projects, heavy equipment maintenance and other instances where high torque output is needed. A torque multiplier allows the user to generate high torque output without the use of an air compressor or impact gun.

A torque multiplier is generally used when there are space limitations that disallow the use of long handles. They are also used as a safer alternative to a cheater bar as lever length and operator effort are both reduced. Finally, torque multipliers allow for more accurate torque. By reducing the amount of effort needed to tighten, a torque multiplier allows for slow and smooth application, ensuring more accurate torque levels, and preventing damage to sensitive components. [3]

Related Research Articles

Coupling Mechanical connection between two objects

A coupling is a device used to connect two shafts together at their ends for the purpose of transmitting power. The primary purpose of couplings is to join two pieces of rotating equipment while permitting some degree of misalignment or end movement or both. In a more general context, a coupling can also be a mechanical device that serves to connect the ends of adjacent parts or objects. Couplings do not normally allow disconnection of shafts during operation, however there are torque-limiting couplings which can slip or disconnect when some torque limit is exceeded. Selection, installation and maintenance of couplings can lead to reduced maintenance time and maintenance cost.

Differential (mechanical device) Type of simple planetary gear train

A differential is a gear train with three drive shafts that has the property that the rotational speed of one shaft is the average of the speeds of the others, or a fixed multiple of that average.

A torque wrench is a tool used to apply a specific torque to a fastener such as a nut, bolt, or lag screw. It is usually in the form of a socket wrench with special internal mechanisms.

Epicyclic gearing Two gears mounted so the center of one gear revolves around the center of the other

An epicyclic gear train consists of two gears mounted so that the center of one gear revolves around the center of the other. A carrier connects the centers of the two gears and rotates the planet and sun gears mesh so that their pitch circles roll without slip. A point on the pitch circle of the planet gear traces an epicycloid curve. In this simplified case, the sun gear is fixed and the planetary gear(s) roll around the sun gear.

Overdrive (mechanics) Operation of an automobile cruising at sustained speed with reduced engine revolutions

Overdrive is the operation of an automobile cruising at sustained speed with reduced engine revolutions per minute (RPM), leading to better fuel consumption, lower noise, and lower wear. The term is ambiguous. The most fundamental meaning is that of an overall gear ratio between engine and wheels, such that the car is over-geared, and cannot reach its potential top speed, i.e. the car could travel faster if it were in a lower gear, with the engine turning at higher RPM.

Propulsion transmission Drivetrain transmitting propulsion power

Propulsion transmission is the mode of transmitting and controlling propulsion power of a machine. The term transmission properly refers to the whole drivetrain, including clutch, gearbox, prop shaft, differential, and final drive shafts. In the United States the term is sometimes used in casual speech to refer more specifically to the gearbox alone, and detailed usage differs. The transmission reduces the higher engine speed to the slower wheel speed, increasing torque in the process. Transmissions are also used on pedal bicycles, fixed machines, and where different rotational speeds and torques are adapted.

Continuously variable transmission Automotive transmission technology

A continuously variable transmission (CVT) is an automatic transmission that can change seamlessly through a continuous range of gear ratios. This contrasts with other transmissions that provide a limited number of gear ratios in fixed steps. The flexibility of a CVT with suitable control may allow the engine to operate at a constant RPM while the vehicle moves at varying speeds.

Manual transmission Motor vehicle manual gearbox; stick shift

A manual transmission (MT), also known as manual gearbox, standard transmission, or stick shift, is a multi-speed motor vehicle transmission system, where gear changes require the driver to manually select the gears by operating a gear stick and clutch.

Gear train Mechanical transmission using multiple gears.

A gear train is a mechanical system formed by mounting gears on a frame so the teeth of the gears engage.

Cheater bar

A cheater bar, snipe, or cheater pipe is an improvised breaker bar made from a length of pipe and a wrench (spanner).

Fluid coupling

A fluid coupling or hydraulic coupling is a hydrodynamic or 'hydrokinetic' device used to transmit rotating mechanical power. It has been used in automobile transmissions as an alternative to a mechanical clutch. It also has widespread application in marine and industrial machine drives, where variable speed operation and controlled start-up without shock loading of the power transmission system is essential.

Cycloidal drive Eccentric gear reduction mechanism

A cycloidal drive or cycloidal speed reducer is a mechanism for reducing the speed of an input shaft by a certain ratio. Cycloidal speed reducers are capable of relatively high ratios in compact sizes with very low backlash.

Propeller speed reduction unit

A propeller speed reduction unit is a gearbox or a belt and pulley device used to reduce the output revolutions per minute (rpm) from the higher input rpm of the powerplant. This allows the use of small displacement internal combustion engines to turn aircraft propellers within an efficient speed range.

Torque limiter

A torque limiter is an automatic device that protects mechanical equipment, or its work, from damage by mechanical overload. A torque limiter may limit the torque by slipping, or uncouple the load entirely. The action of a torque limiter is especially useful to limit any damage due to crash stops and jams.

British Rail 10100

British Railways 10100 was an unusual experimental diesel locomotive known informally as The Fell Diesel Locomotive. It was the joint production of Davey Paxman & Co, Shell Refining & Marketing Co and Lt-Col L. F. R. Fell, built for them by the London, Midland and Scottish Railway at Derby. Sir Harry Ricardo was also involved. By the time it emerged in 1950, nationalisation had taken place and it carried British Railways livery. The locomotive had six diesel engines, four of them used for traction. There were two auxiliary engines, both of which were 150 hp (110 kW) AEC 6-cylinder units, and these drove the pressure-chargers for the main engines and the purpose of this arrangement was to enable the main engines to deliver very high torque at low crankshaft speed.

Impact wrench Socket wrench power tool

An impact wrench is a socket wrench power tool designed to deliver high torque output with minimal exertion by the user, by storing energy in a rotating mass, then delivering it suddenly to the output shaft. It was invented by Robert H. Pott of Evansville, Indiana.

Ravigneaux planetary gearset

The Ravigneaux gearset is a double planetary gear set, invented by Pol Ravigneaux, who filed a patent application on July 28, 1949, in Neuilly-sur-Seine France. This planetary gear set, commonly used in automatic transmissions, is constructed from two gear pairs, ring–planet and planet–planet.

The ZF Ecomat automotive transmission was specifically designed by ZF Friedrichshafen AG primarily for city-buses and motorcoaches. It has several generations – all of the automatic transmission type, and many variants. The latest variants use a lock-up torque converter along with a retarder. Some variants are listed below.

Lap Engine

The Lap Engine is a beam engine designed by James Watt, built by Boulton and Watt in 1788. It is now preserved at the Science Museum, London.

Battery torque wrench

A battery torque wrench is a battery-operated torque wrench that can apply a specified torque without effort from the operator. It contains a planetary torque multiplier or a gearbox. A reaction device that absorbs the torque rather than the tool operator. The torque output is adjusted by varying the voltage on the motor. The battery torque wrench is used to remove stubborn nuts, or to apply accurate torque. The gearboxes can have multiplication ratios up to 125:1.

References

  1. Andy Calloway, "How torque multipliers work?", Worlifts, 8 March 2017. "Worlifts is a proud distributer[sic] of Norbar Torque Tools, and a popular product in the range is the Norbar Torque Multiplier."
  2. "What is a torque multiplier?", Maxpro Corp, 16 Dec 2015. "How does it work? Benefits and common uses for torque multipliers."
  3. Norbar, "Handtorque™ multipliers" (PDF).