Transposition (telecommunications)

Last updated

Transposition is the periodic swapping of positions of the conductors of a transmission line, in order to reduce crosstalk and otherwise improve transmission. In telecommunications this applies to balanced pairs whilst in power transmission lines three conductors are periodically transposed.

Contents

For cables, the swapping is gradual and continuous; that is the two or three conductors are twisted around each other. For communication cables, this is called twisted pair. For overhead power lines or open pair communication lines, the conductors are exchanged at pylons, for example at transposition towers or at utility poles, respectively.

The mutual influence of electrical conductors is reduced by transposition. Transposition also equalizes their impedance relative to the ground, thus avoiding one-sided loads in three-phase electric power systems. Transposing is an effective measure for the reduction of inductively linked normal mode interferences.

Power lines

Wire transposition on top of pole Wire Transposition.svg
Wire transposition on top of pole

For longer powerlines without branches, wires are transposed according to the transposing scheme. At closely branched grids and where several electric circuits share a route (in particular when the lines operate at different voltages) on the same pylons the outside unbalance of the line, which is caused by the other electric circuits, dominates. In these cases, one finds large deviations from the transposing schemes. For example, in some such transpositions, only two of the three conductors on the pylons change their place. Also, transpositions on pylons near power substations are used to get an optimal arrangement of the feeding system without crossing of conductors.

As the mutual influence of electric circuits can change after new lines are installed or old lines dismantled, certain transpositions may disappear or be added after new construction in electricity mains. In the case of a twisted line the individual conductors of an electric circuit swap places, either in their whole course (at cables) or at certain points (at overhead lines). The mutual influence of electrical conductors is reduced by transposing. The unbalance of the line, which can lead to one-sided loads in three-phase systems, is also reduced. Transposing of overhead lines is usually realized at so-called transposing pylons. Transposing is an effective measure for the reduction of inductively linked normal mode interferences.

Three basic patterns, with variants, with the fractional length shown above each segment Verdrillschemata.gif
Three basic patterns, with variants, with the fractional length shown above each segment

A transposing scheme is a pattern by which the conductors of overhead power lines are transposed at transposing structures. To ensure balanced capacitance of a three-phase line, each of the three conductors must hang once at each position of the overhead line.

At a transposition tower, the conductors change their relative places in the line. A transposing structure may be a standard structure with special cross arms or maybe a dead-end structure. The transposing is necessary as there is capacitance between conductors, as well as between conductors and ground. This is typically not symmetrical across phases. By transposing, the overall capacitance for the whole line is approximately balanced. Transposing also reduce effects to communication circuits. [1]

Modern power lines are normally not transposed on the go as the difference in the inductance of the phases are negligibly small due to asymmetrical spacing, However, intermediate switching stations, where the transposition takes place, are implemented whenever it necessary and can not be neglected. [2]

Pylon 206 of powerline Hoheneck-Herbertingen near Rubgarten. Facility4508 Pylon206.JPG
Pylon 206 of powerline Hoheneck-Herbertingen near Rübgarten.

Telecommunication

In communication cables, the transposition is used to reduce coupling between circuits in the same cable. The principal measure is the pitch or lay length, [3] the distance over which the pairs of a circuit are twisted. By twisting, the wires become longer than the cable. The stranding factor indicates the relationship of single wire length to cable length; it amounts to with communication cables about 1.02 to 1.04.

Kinds of stranding

In practice the following kinds of stranding occur more frequently:

Transmission technique

The kinds of stranding have different transmission characteristics. The capacity of a stranding affects itself, for example, the two conductors of a quadruple run parallel over the entire cable length in star quad twisting. Capacitance between the conductors is thus substantially higher than with Dieselhorst Martin (DHM) - stranding in which the situation of the conductors to each other in the cable changes repeatedly. Because of the smaller work capacity of the DHM stranding, it is possible to form additional electric circuits with the help of a phantom circuit. Since the phantom transducers are turned on to in the middle of the master transducers, the currents of the phantom circuit on the two coming Rome circles[ clarification needed ] compensate themselves.

See also

Related Research Articles

Electric power transmission Bulk movement of electrical energy from a generating site to an electrical substation

Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines which facilitate this movement are known as a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the electrical grid.

In telecommunications and professional audio, a balanced line or balanced signal pair is a circuit consisting of two conductors of the same type, each of which have equal impedances along their lengths and equal impedances to ground and to other circuits. The chief advantage of the balanced line format is good rejection of common-mode noise and interference when fed to a differential device such as a transformer or differential amplifier. Common forms of balanced line are twin-lead, used for radio frequency signals and twisted pair, used for lower frequencies. They are to be contrasted to unbalanced lines, such as coaxial cable, which is designed to have its return conductor connected to ground, or circuits whose return conductor actually is ground. Balanced and unbalanced circuits can be interfaced using a device called a balun.

In telecommunication and electrical engineering, a phantom circuit is an electrical circuit derived from suitably arranged wires with one or more conductive paths being a circuit in itself and at the same time acting as one conductor of another circuit.

Transmission line Cable or other structure for carrying radio waves

In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances. However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.

Electrical cable Assembly of one or more wires running side by side or bundled

An electrical cable is an assembly of one or more wires running side by side or bundled, which is used to carry electric current.

Twisted pair Type of wiring

Twisted pair cabling is a type of wiring in which two conductors of a single circuit are twisted together for the purposes of improving electromagnetic compatibility. Compared to a single conductor or an untwisted balanced pair, a twisted pair reduces electromagnetic radiation from the pair and crosstalk between neighboring pairs and improves rejection of external electromagnetic interference. It was invented by Alexander Graham Bell.

An overhead line or overhead wire is an electrical cable that is used to transmit electrical energy to electric locomotives, trolleybuses or trams. It is known variously as:

Transmission tower Structure used to support an overhead power line

A transmission tower, also known as an electricity pylon or simply a pylon in British English and as a hydro tower in Canadian English, is a tall structure, usually a steel lattice tower, used to support an overhead power line.

Dead-end tower

A dead-end tower is a fully self-supporting structure used in construction of overhead power lines. A dead-end transmission tower uses horizontal strain insulators at the end of conductors. Dead-end towers may be used at a substation as a transition to a "slack span" entering the equipment, when the circuit changes to a buried cable, when a transmission line changes direction by more than a few degrees, or at intervals along a straight run to limit the extent of a catastrophic collapse.

Utility pole Post used by public utilities to support overhead wires and related equipment

A utility pole is a column or post typically made out of wood used to support overhead power lines and various other public utilities, such as electrical cable, fiber optic cable, and related equipment such as transformers and street lights. It can be referred to as a transmission pole, telephone pole, telecommunication pole, power pole, hydro pole, telegraph pole, or telegraph post, depending on its application. A Stobie pole is a multi-purpose pole made of two steel joists held apart by a slab of concrete in the middle, generally found in South Australia.

A single-wire transmission line is a method of transmitting electrical power or signals using only a single electrical conductor. This is in contrast to the usual use of a pair of wires providing a complete circuit, or an electrical cable likewise containing two conductors for that purpose.

Overhead power line Structure used in electric power transmission and distribution

An overhead power line is a structure used in electric power transmission and distribution to transmit electrical energy across large distances. It consists of one or more uninsulated electrical cables suspended by towers or poles.

Differential signalling

Differential signalling is a method for electrically transmitting information using two complementary signals. The technique sends the same electrical signal as a differential pair of signals, each in its own conductor. The pair of conductors can be wires in a twisted-pair or ribbon cable or traces on a printed circuit board.

Traction power network

A traction network or traction power network is an electricity grid for the supply of electrified rail networks. The installation of a separate traction network generally is done only if the railway in question uses alternating current (AC) with a frequency lower than that of the national grid, such as in Germany, Austria and Switzerland.

Unbalanced line

In telecommunications and electrical engineering in general, an unbalanced line is a pair of conductors intended to carry electrical signals, which have unequal impedances along their lengths and to ground and other circuits. Examples of unbalanced lines are coaxial cable or the historic earth return system invented for the telegraph, but rarely used today. Unbalanced lines are to be contrasted with balanced lines, such as twin-lead or twisted pair which use two identical conductors to maintain impedance balance throughout the line. Balanced and unbalanced lines can be interfaced using a device called a balun.

In an electric power system, a fault or fault current is any abnormal electric current. For example, a short circuit is a fault in which a live wire touches a neutral or ground wire. An open-circuit fault occurs if a circuit is interrupted by a failure of a current-carrying wire or a blown fuse or circuit breaker. In three-phase systems, a fault may involve one or more phases and ground, or may occur only between phases. In a "ground fault" or "earth fault", current flows into the earth. The prospective short-circuit current of a predictable fault can be calculated for most situations. In power systems, protective devices can detect fault conditions and operate circuit breakers and other devices to limit the loss of service due to a failure.

An optical ground wire is a type of cable that is used in overhead power lines. Such cable combines the functions of grounding and communications. An OPGW cable contains a tubular structure with one or more optical fibers in it, surrounded by layers of steel and aluminum wire. The OPGW cable is run between the tops of high-voltage electricity pylons. The conductive part of the cable serves to bond adjacent towers to earth ground, and shields the high-voltage conductors from lightning strikes. The optical fibers within the cable can be used for high-speed transmission of data, either for the electrical utility's own purposes of protection and control of the transmission line, for the utility's own voice and data communication, or may be leased or sold to third parties to serve as a high-speed fiber interconnection between cities.

In civil engineering, undergrounding is the replacement of overhead cables providing electrical power or telecommunications, with underground cables. It demonstrates the higher technology in developed countries for fire prevention and to make the power lines less susceptible to outages during high wind thunderstorms or heavy snow or ice storms. An added benefit of undergrounding is the aesthetic quality of the landscape without the powerlines. Undergrounding can increase the initial costs of electric power transmission and distribution but may decrease operational costs over the lifetime of the cables.

Star quad cable

Star-quad cable is a four-conductor cable that has a special quadrupole geometry which provides magnetic immunity when used in a balanced line. Four conductors are used to carry the two legs of the balanced line. All four conductors must be an equal distance from a common point. The four conductors are arranged in a four-pointed star. Opposite points of the star are connected together at each end of the cable to form each leg of the balanced circuit.

Performance and modelling of AC transmission

Performance modelling is the abstraction of a real system into a simplified representation to enable the prediction of performance. The creation of a model can provide insight into how a proposed or actual system will or does work. This can, however, point towards different things to people belonging to different fields of work.

References

  1. Central Station Engineers, Electrical Transmission and Distribution Reference Book, Westinghouse Electric Corporation, East Pittsburgh, Pennsylvania, 4th Ed. 1950 pages 748, 778
  2. Wadhwa, C.L (2017). Electrical power systems (7th multi-colour ed.). London: New Age International. pp. 25–26. ISBN   9789386070197. OCLC   1045630474.
  3. Lay Length cablecad.com