Triadin

Last updated
TRDN
Identifiers
Aliases TRDN , CPVT5, TDN, TRISK, triadin, CARDAR
External IDs OMIM: 603283; MGI: 1924007; HomoloGene: 38137; GeneCards: TRDN; OMA:TRDN - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001251987
NM_001256020
NM_001256021
NM_001256022
NM_006073

Contents

NM_029726
NM_001364696
NM_001364697

RefSeq (protein)

NP_084002
NP_001351625
NP_001351626

Location (UCSC) Chr 6: 123.22 – 123.64 Mb Chr 10: 32.96 – 33.35 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Triadin, also known as TRDN, is a human gene [5] associated with the release of calcium ions from the sarcoplasmic reticulum triggering muscular contraction through calcium-induced calcium release. Triadin is a multiprotein family, arising from different processing of the TRDN gene on chromosome 6. [6] It is a transmembrane protein on the sarcoplasmic reticulum due to a well defined hydrophobic section [7] [8] and it forms a quaternary complex with the cardiac ryanodine receptor (RYR2), calsequestrin (CASQ2) and junctin proteins. [7] [8] [9] [10] The luminal (inner compartment of the sarcoplasmic reticulum) section of Triadin has areas of highly charged amino acid residues that act as luminal Ca2+ receptors. [7] [8] [10] Triadin is also able to sense luminal Ca2+ concentrations by mediating interactions between RYR2 and CASQ2. [9] Triadin has several different forms; Trisk 95 and Trisk 51, which are expressed in skeletal muscle, and Trisk 32 (CT1), which is mainly expressed in cardiac muscle. [11]

Interactions

TRDN has been shown to interact with RYR1. [12] [13] [14] [15]

Triadin is required to physically link the RYR2 and CASQ2 proteins, so that RYR2 channel activity can be regulated by CASQ2. [16] The linkage of RYR2 with CASQ2 occurs via highly charged luminal sections of Triadin [10] that are characterized as alternating positively and negatively charged amino acids, known as the KEKE motif. [8] [9] [10] [17]

Luminal concentration levels of Ca2+ are sensed by CSQ, and this information is transmitted to RyR via Triadin. At low luminal Ca2+ concentrations, Triadin is bound to both RYR2 and CASQ2, so that CSQ prevents RYR2 from opening. At high luminal Ca2+ concentrations, Ca2+ binding sites on CASQ2 become occupied with Ca2+, leading to a weakened interaction between CASQ2 and Triadin. This removes CASQ2's ability to have an inhibitory effect on the RYR2 channel activity. As more Ca2+ binding sites on CASQ2 become occupied, there is an increasing probability of the RYR2 channel being able to open. Eventually, CASQ2 completely dissociates from Triadin and the RYR2 channel becomes completely uninhibited, although Triadin remains bound to RYR2 at all luminal concentrations of Ca2+. [16]

Relation to catecholaminergic polymorphic ventricular tachycardia

Most mutations that result in CPVT are found in RYR2 or CASQ2 genes, however a third of CPVT patients have no mutations in either of these proteins, making a mutation in Triadin the most likely cause [18] Because Triadin is necessary in the regulation of Ca2+ release by the RyR channel during cardiac contraction, a mutation that prevents Triadin from being formed will make CASQ2 unable to inhibit the RYR2 channel activity, allowing Ca2+ leaks and the development of CPVT. [18]

A deletion of amino acids in the TRDN gene can result in an early stop codon. [18] A premature stop codon can either prevent the gene from being translated into the Triadin protein, or can result in a shortened, nonfunctional Triadin protein. [18] A replacement of the amino acid Arginine for the amino acid Threonine at position 59 of the TRDN gene (pT59R) causes instability of Triadin, leading to degradation of the protein. [18] Any of these naturally occurring mutations result in an absence of functional Triadin protein, resulting in CPVT in patients. [18]

Related Research Articles

<span class="mw-page-title-main">Sarcoplasmic reticulum</span> Menbrane-bound structure in muscle cells for storing calcium

The sarcoplasmic reticulum (SR) is a membrane-bound structure found within muscle cells that is similar to the smooth endoplasmic reticulum in other cells. The main function of the SR is to store calcium ions (Ca2+). Calcium ion levels are kept relatively constant, with the concentration of calcium ions within a cell being 10,000 times smaller than the concentration of calcium ions outside the cell. This means that small increases in calcium ions within the cell are easily detected and can bring about important cellular changes (the calcium is said to be a second messenger). Calcium is used to make calcium carbonate (found in chalk) and calcium phosphate, two compounds that the body uses to make teeth and bones. This means that too much calcium within the cells can lead to hardening (calcification) of certain intracellular structures, including the mitochondria, leading to cell death. Therefore, it is vital that calcium ion levels are controlled tightly, and can be released into the cell when necessary and then removed from the cell.

Ryanodine receptors form a class of intracellular calcium channels in various forms of excitable animal tissue like muscles and neurons. There are three major isoforms of the ryanodine receptor, which are found in different tissues and participate in different signaling pathways involving calcium release from intracellular organelles. The RYR2 ryanodine receptor isoform is the major cellular mediator of calcium-induced calcium release (CICR) in animal cells.

<span class="mw-page-title-main">Caveolin 3</span> Protein found in humans

Caveolin-3 is a protein that in humans is encoded by the CAV3 gene. Alternative splicing has been identified for this locus, with inclusion or exclusion of a differentially spliced intron. In addition, transcripts utilize multiple polyA sites and contain two potential translation initiation sites.

<span class="mw-page-title-main">Calsequestrin</span> Calcium-binding protein

Calsequestrin is a calcium-binding protein that acts as a calcium buffer within the sarcoplasmic reticulum. The protein helps hold calcium in the cisterna of the sarcoplasmic reticulum after a muscle contraction, even though the concentration of calcium in the sarcoplasmic reticulum is much higher than in the cytosol. It also helps the sarcoplasmic reticulum store an extraordinarily high amount of calcium ions. Each molecule of calsequestrin can bind 18 to 50 Ca2+ ions. Sequence analysis has suggested that calcium is not bound in distinct pockets via EF-hand motifs, but rather via presentation of a charged protein surface. Two forms of calsequestrin have been identified. The cardiac form Calsequestrin-2 (CASQ2) is present in cardiac and slow skeletal muscle and the fast skeletal form Calsequestrin-1(CASQ1) is found in fast skeletal muscle. The release of calsequestrin-bound calcium (through a calcium release channel) triggers muscle contraction. The active protein is not highly structured, more than 50% of it adopting a random coil conformation. When calcium binds there is a structural change whereby the alpha-helical content of the protein increases from 3 to 11%. Both forms of calsequestrin are phosphorylated by casein kinase 2, but the cardiac form is phosphorylated more rapidly and to a higher degree. Calsequestrin is also secreted in the gut where it deprives bacteria of calcium ions..

<span class="mw-page-title-main">Catecholaminergic polymorphic ventricular tachycardia</span> Medical condition

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited genetic disorder that predisposes those affected to potentially life-threatening abnormal heart rhythms or arrhythmias. The arrhythmias seen in CPVT typically occur during exercise or at times of emotional stress, and classically take the form of bidirectional ventricular tachycardia or ventricular fibrillation. Those affected may be asymptomatic, but they may also experience blackouts or even sudden cardiac death.

A calcium spark is the microscopic release of calcium (Ca2+) from a store known as the sarcoplasmic reticulum (SR), located within muscle cells. This release occurs through an ion channel within the membrane of the SR, known as a ryanodine receptor (RyR), which opens upon activation. This process is important as it helps to maintain Ca2+ concentration within the cell. It also initiates muscle contraction in skeletal and cardiac muscles and muscle relaxation in smooth muscles. Ca2+ sparks are important in physiology as they show how Ca2+ can be used at a subcellular level, to signal both local changes, known as local control, as well as whole cell changes.

<span class="mw-page-title-main">Sarcalumenin</span> Protein-coding gene in the species Homo sapiens

Sarcalumenin is a protein that in humans is encoded by the SRL gene.

<span class="mw-page-title-main">Calmodulin 1</span> Protein found in humans

Calmodulin 1 is a protein in humans that is encoded by the CALM1 gene.

<span class="mw-page-title-main">Ryanodine receptor 2</span> Transport protein and coding gene in humans

Ryanodine receptor 2 (RYR2) is one of a class of ryanodine receptors and a protein found primarily in cardiac muscle. In humans, it is encoded by the RYR2 gene. In the process of cardiac calcium-induced calcium release, RYR2 is the major mediator for sarcoplasmic release of stored calcium ions.

<span class="mw-page-title-main">ATP2A1</span> Protein-coding gene in the species Homo sapiens

Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (SERCA1) also known as Calcium pump 1, is an enzyme that in humans is encoded by the ATP2A1 gene.

Ca<sub>v</sub>1.1 Mammalian protein found in humans

Cav1.1 also known as the calcium channel, voltage-dependent, L type, alpha 1S subunit, (CACNA1S), is a protein which in humans is encoded by the CACNA1S gene. It is also known as CACNL1A3 and the dihydropyridine receptor.

<span class="mw-page-title-main">ATP2A3</span> Protein-coding gene in the species Homo sapiens

Sarcoplasmic/endoplasmic reticulum calcium ATPase 3 is an enzyme that in humans is encoded by the ATP2A3 gene.

<span class="mw-page-title-main">HRC (gene)</span> Protein-coding gene in the species Homo sapiens

Sarcoplasmic reticulum histidine-rich calcium-binding protein is a protein that in humans is encoded by the HRC gene.

<span class="mw-page-title-main">Sarcolipin</span> Protein-coding gene in the species Homo sapiens

Sarcolipin is a micropeptide protein that in humans is encoded by the SLN gene.

<span class="mw-page-title-main">AKAP6</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 6 is an enzyme that in humans is encoded by the AKAP6 gene.

<span class="mw-page-title-main">Ryanodine receptor 1</span> Protein and coding gene in humans

Ryanodine receptor 1 (RYR-1) also known as skeletal muscle calcium release channel or skeletal muscle-type ryanodine receptor is one of a class of ryanodine receptors and a protein found primarily in skeletal muscle. In humans, it is encoded by the RYR1 gene.

<span class="mw-page-title-main">Ryanodine receptor 3</span> Transport protein and coding gene in humans

Ryanodine receptor 3 is one of a class of ryanodine receptors and a protein that in humans is encoded by the RYR3 gene. The protein encoded by this gene is both a calcium channel and a receptor for the plant alkaloid ryanodine. RYR3 and RYR1 control the resting calcium ion concentration in skeletal muscle.

Imperatoxin I (IpTx) is a peptide toxin derived from the venom of the African scorpion Pandinus imperator.

<span class="mw-page-title-main">Hadrucalcin</span> Peptide toxin from the venom of the scorpion Hadrurus gertschi

Hadrucalcin is a peptide toxin from the venom of the scorpion Hadrurus gertschi. Hadrucalcin modifies the Ryanodine receptor channels RyR1 and RyR2, found in the sarcoplasmic reticulum, to a long-lasting subconductance state, thus inducing the release of calcium from the sarcoplasmic reticulum.

The ryanodine-inositol 1,4,5-triphosphate receptor Ca2+ channel (RIR-CaC) family includes Ryanodine receptors and Inositol trisphosphate receptors. Members of this family are large proteins, some exceeding 5000 amino acyl residues in length. This family belongs to the Voltage-gated ion channel (VIC) superfamily. Ry receptors occur primarily in muscle cell sarcoplasmic reticular (SR) membranes, and IP3 receptors occur primarily in brain cell endoplasmic reticular (ER) membranes where they effect release of Ca2+ into the cytoplasm upon activation (opening) of the channel. They are redox sensors, possibly providing a partial explanation for how they control cytoplasmic Ca2+. Ry receptors have been identified in heart mitochondria where they provide the main pathway for Ca2+ entry. Sun et al. (2011) have demonstrated oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor-Ca2+ release channel (RyR1;TC# 1.A.3.1.2) by NADPH oxidase 4.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000186439 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000019787 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: TRDN triadin".
  6. Thevenon, D.; Smida-Rezgui, S.; Chevessier, F.; Groh, S.; Henry-Berger, J.; Romero, N. B.; Villaz, M.; De Waard, M; Marty, I (2003). "Human skeletal muscle triadin: gene organization and cloning of the major isoform, Trisk 51". Biochem. Biophys. Res. Commun. 303 (12): 669–675. doi:10.1016/s0006-291x(03)00406-6. PMID   12659871.
  7. 1 2 3 Kobayashi, Y. M.; Jones, L. R. (1999). "Identification of triadin 1 as the predominant triadin isoform expressed in mammalian myocardium". J. Biol. Chem. 274 (40): 28660–28668. doi: 10.1074/jbc.274.40.28660 . PMID   10497235.
  8. 1 2 3 4 Jones, L. R.; Zhang, L.; Sanborn, K.; Jorgensen, A. O.; Kelley., J. (1995). "Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum". J. Biol. Chem. 270 (51): 30787–30796. doi: 10.1074/jbc.270.51.30787 . PMID   8530521.
  9. 1 2 3 Zhang, L.; Kelley, J.; Schmeisser, G.; Kobayashi, Y. M.; Jones, L. R. (1997). "Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane". J. Biol. Chem. 272 (37): 23389–23397. doi: 10.1074/jbc.272.37.23389 . PMID   9287354.
  10. 1 2 3 4 Kobayashi, Y. M.; Alseikhan, B. A.; Jones, L. R. (2000). "Localization and characterization of the calsequestrin-binding domain of triadin 1. Evidence for a charged beta-strand in mediating the protein-protein interaction". J. Biol. Chem. 275 (23): 17639–17646. doi: 10.1074/jbc.M002091200 . PMID   10748065.
  11. Marty, I.; Fauré, J.; Fourest-Lieuvin, A.; Vassilopoulos, S.; Oddoux, S.; Brocard, J. (2009). "Triadin: what possible function 20 years later?". J. Physiol. 587 (13): 3117–3121. doi:10.1113/jphysiol.2009.171892. PMC   2727022 . PMID   19403623.
  12. Lee, Jae Man; Rho Seong-Hwan; Shin Dong Wook; Cho Chunghee; Park Woo Jin; Eom Soo Hyun; Ma Jianjie; Kim Do Han (Feb 2004). "Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin". J. Biol. Chem. 279 (8). United States: 6994–7000. doi: 10.1074/jbc.M312446200 . ISSN   0021-9258. PMID   14638677.
  13. Caswell, A H; Motoike H K; Fan H; Brandt N R (Jan 1999). "Location of ryanodine receptor binding site on skeletal muscle triadin". Biochemistry. 38 (1). United States: 90–7. doi:10.1021/bi981306+. ISSN   0006-2960. PMID   9890886.
  14. Guo, W; Campbell K P (Apr 1995). "Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum". J. Biol. Chem. 270 (16). United States: 9027–30. doi: 10.1074/jbc.270.16.9027 . ISSN   0021-9258. PMID   7721813.
  15. Groh, S; Marty I; Ottolia M; Prestipino G; Chapel A; Villaz M; Ronjat M (Apr 1999). "Functional interaction of the cytoplasmic domain of triadin with the skeletal ryanodine receptor". J. Biol. Chem. 274 (18). United States: 12278–83. doi: 10.1074/jbc.274.18.12278 . ISSN   0021-9258. PMID   10212196.
  16. 1 2 Gyorke, I.; Hester, N.; Jones, L. R.; Gyorke, S. (2004). "The Role of Calsequestrin, Triadin, and Junctin in Conferring Cardiac Ryanodine Receptor Responsiveness to Luminal Calcium". Biophysical Journal. 86 (4): 2121–2128. Bibcode:2004BpJ....86.2121G. doi:10.1016/S0006-3495(04)74271-X. PMC   1304063 . PMID   15041652.
  17. Shin, D. W.; Ma, J.; Kim, D. H. (2000). "The asp-rich region at the carboxyl-terminus of calsequestrin binds to Ca2+ and interacts with triadin". FEBS Lett. 486 (2): 178–182. doi:10.1016/S0014-5793(00)02246-8. PMID   11113462. S2CID   3135618.
  18. 1 2 3 4 5 6 Roux-Buisson, N.; Cacheux, M.; Fourest-Lieuvin, A.; Fauconnier, J.; Brocard, J.; Denjoy, I.; Durand, P.; Guicheney, P.; Kyndt, F.; Leenhardt, A.; Le Marec, H.; Lucet, V.; Mabo, P.; Probst, V.; Monnier, N.; Ray, P. F.; Santoni, E.; Tremeaux, P.; Lacampagne, A.; Faure, J.; Lunardi, J.; Marty, I. (2012). "Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human". Human Molecular Genetics. 21 (12): 2759–2767. doi:10.1093/hmg/dds104. PMC   3363337 . PMID   22422768.

Further reading