Truncated icosahedral prism

Last updated
Truncated icosahedral prism
Truncated icosahedral prism.png
Schlegel diagram
Type Prismatic uniform polychoron
Uniform index62
Schläfli symbol t0,1,3{3,5,2} or t{3,5}×{}
Coxeter-Dynkin CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node 1.png
Cells34 total:

2 Truncated icosahedron.png 5.6.6
12 Pentagonal prism.png 4.4.5
20 Hexagonal prism.png 4.4.6

Faces154 total:
90 {4}
24 {5}
40 {6}
Edges240
Vertices120
Vertex figure Truncated icosahedral prism verf.png
Isosceles-triangular pyramid
Symmetry group [5,3,2], order 240
Properties convex
Net Truncated icosahedral prism net.png
Net

In geometry, a truncated icosahedral prism is a convex uniform polychoron (four-dimensional polytope).

Contents

It is one of 18 convex uniform polyhedral prisms created by using uniform prisms to connect pairs of Platonic solids or Archimedean solids in parallel hyperplanes.

Alternative names

See also

Related Research Articles

<span class="mw-page-title-main">Uniform 4-polytope</span> Class of 4-dimensional polytopes

In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

<span class="mw-page-title-main">Rectified 600-cell</span>

In geometry, the rectified 600-cell or rectified hexacosichoron is a convex uniform 4-polytope composed of 600 regular octahedra and 120 icosahedra cells. Each edge has two octahedra and one icosahedron. Each vertex has five octahedra and two icosahedra. In total it has 3600 triangle faces, 3600 edges, and 720 vertices.

<span class="mw-page-title-main">Order-5 cubic honeycomb</span> Regular tiling of hyperbolic 3-space

In hyperbolic geometry, the order-5 cubic honeycomb is one of four compact regular space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {4,3,5}, it has five cubes {4,3} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.

<span class="mw-page-title-main">Icosahedral honeycomb</span> Regular tiling of hyperbolic 3-space

In geometry, the icosahedral honeycomb is one of four compact, regular, space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {3,5,3}, there are three icosahedra around each edge, and 12 icosahedra around each vertex, in a regular dodecahedral vertex figure.

<span class="mw-page-title-main">Cantellated 5-cell</span>

In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation of the regular 5-cell.

<span class="mw-page-title-main">Truncated 120-cells</span> Uniform 4-polytope

In geometry, a truncated 120-cell is a uniform 4-polytope formed as the truncation of the regular 120-cell.

<span class="mw-page-title-main">Cantellated 120-cell</span> 4D geometry item

In four-dimensional geometry, a cantellated 120-cell is a convex uniform 4-polytope, being a cantellation of the regular 120-cell.

<span class="mw-page-title-main">Runcinated 120-cells</span>

In four-dimensional geometry, a runcinated 120-cell is a convex uniform 4-polytope, being a runcination of the regular 120-cell.

<span class="mw-page-title-main">Truncated tetrahedral prism</span> Geometric Prism

In geometry, a truncated tetrahedral prism is a convex uniform polychoron. This polychoron has 10 polyhedral cells: 2 truncated tetrahedra connected by 4 triangular prisms and 4 hexagonal prisms. It has 24 faces: 8 triangular, 18 square, and 8 hexagons. It has 48 edges and 24 vertices.

<span class="mw-page-title-main">Icosahedral prism</span>

In geometry, an icosahedral prism is a convex uniform 4-polytope. This 4-polytope has 22 polyhedral cells: 2 icosahedra connected by 20 triangular prisms. It has 70 faces: 30 squares and 40 triangles. It has 72 edges and 24 vertices.

In 4-dimensional geometry, a truncated octahedral prism or omnitruncated tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 16 cells It has 64 faces, and 96 edges and 48 vertices.

<span class="mw-page-title-main">Truncated dodecahedral prism</span> Convex uniform polychoron

In geometry, a truncated dodecahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Rhombicosidodecahedral prism</span>

In geometry, a rhombicosidodecahedral prism or small rhombicosidodecahedral prism is a convex uniform polychoron.

In geometry, a rhombicuboctahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Truncated cubic prism</span>

In geometry, a truncated cubic prism is a convex uniform polychoron.

<span class="mw-page-title-main">Truncated cuboctahedral prism</span>

In geometry, a truncated cuboctahedral prism or great rhombicuboctahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Truncated icosidodecahedral prism</span>

In geometry, a truncated icosidodecahedral prism or great rhombicosidodecahedral prism is a convex uniform 4-polytope.

<span class="mw-page-title-main">Snub dodecahedral prism</span>

In geometry, a snub dodecahedral prism or snub icosidodecahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Order-5 hexagonal tiling honeycomb</span>

In the field of hyperbolic geometry, the order-5 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell consists of a hexagonal tiling whose vertices lie on a horosphere, a flat plane in hyperbolic space that approaches a single ideal point at infinity.

References