UNAVCO

Last updated
UNAVCO, Inc.
Founded1984 (1984)
Focus Geodesy, Data acquisition, Scientific data archiving
Location
Coordinates 40°03′40″N105°12′21″W / 40.06114°N 105.20586°W / 40.06114; -105.20586
Website www.unavco.org
Formerly called
University NAVSTAR Consortium

UNAVCO [1] was a non-profit university-governed consortium that facilitated geology research and education using geodesy.

Contents

Background

UNAVCO was funded by the National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), and United States Geological Survey (USGS) to support geology research. It operated the U.S. National Science Foundation's Geodetic Facility for the Advancement of Geoscience (GAGE Facility). UNAVCO had 120 US academic member organizations and supported over 110 organizations globally as associate members.

On January 1, 2023, UNAVCO merged with the Incorporated Research Institutions for Seismology (IRIS) to form EarthScope Consortium. [2]

Tools and services

Data

The UNAVCO GAGE Facility, as a World Data Center, provided access to scientific data for quantifying the motions of rock, ice, and water at or near the Earth's surface. Geodetic Imaging Data is collected by various sensors deployed on satellites, aircraft, and on the ground to provide high-resolution terrain models and deformation measurements. Data collected from strain and seismic borehole instruments is used to measure deformation on or near to the surface of the Earth as well as to measure the physical properties of rock within the vicinity of the installations. At many of the geodetic measurement sites, meteorological data are also collected to aid with processing of the geodetic data. UNAVCO archived and distributed data from the EarthScope program Plate Boundary Observatory, which later became part of the Network of the Americas (NOTA).

GPS/GNSS systems

The UNAVCO GAGE Facility managed a community pool of high accuracy portable GPS/GNSS receiver systems used for a range of research applications.

Terrestrial laser scanning

The GAGE Facility at UNAVCO maintained a pool of Terrestrial Laser Scanning (TLS) instruments to support Earth science investigators. TLS technology is based on lidar (Light Detection And Ranging) and is sometimes referred to as ground-based lidar or tripod lidar. It is an active imaging system whereby laser pulses are emitted by the scanner and the time and intensity of the returning pulses, reflected by the surface or object being scanned, are recorded. The round-trip time for pulses enables the taking of millions/billions of points, from which a 3D "point cloud" is generated to accurately map the scanned surface/object.

The primary capability of TLS is the generation of high-resolution 3D maps and images of surfaces and objects over scales of meters to kilometers with centimeter to sub-centimeter precision. Repeat TLS measurements allow the imaging and measurement of changes through time and in unprecedented detail, making TLS even more valuable for transformative science investigations.

Geology applications include detailed mapping of fault scarps, geologic outcrops, fault-surface roughness, frost polygons, lava lakes, dikes, fissures, glaciers, columnar joints and hillside drainages. Carrying out additional TLS surveys can be useful in the imaging and measurement of surface changes over time due to, for example:

The incorporation of GNSS/GPS measurements provides accurate georeferencing of TLS data in an absolute reference frame. The addition of digital photography can be used to create photorealistic 3D images.

Polar services

The UNAVCO GAGE Facility provided geodetic support to NSF-OPP (National Science Foundation Office of Polar Programs) funded researchers working in the Arctic and Antarctic. Survey-grade GPS receivers, Terrestrial Laser Scanners, and supporting power and communications systems for continuous data collection and campaign surveying could be provided. Operation and maintenance services were also provided for long term data collection, with on-line data distribution from the UNAVCO community archive.

NASA and IGS support

The UNAVCO GAGE Facility provided global infrastructure support to NASA/JPL in operating a collection of globally distributed permanent GNSS/GPS stations called the NASA Global GNSS Network (GGN), which forms part of the International GNSS Service (IGS) network. [3] [4]

Plate Boundary Observatory (PBO)

UNAVCO operated the Plate Boundary Observatory (PBO), the geodetic component of the EarthScope program funded by the National Science Foundation. The PBO consisted of several major observatory components: a network of 1,100+ permanent, continuously operating Global Positioning System (GPS) stations many of which provided data at high-rate and in real-time, 78 borehole seismometers, 74 borehole strainmeters, 28 shallow borehole tilt meters, and six long baseline laser strain meters.

Continuously Operating Caribbean GPS Observational Network (COCONet)

UNAVCO operated the Continuously Operating Caribbean GNSS/GPS Observational Network (COCONet), which consisted of 50 planned continuously operating GPS/weather stations integrated with 65 existing GPS stations operated by partner organizations. COCONet provides open-format GPS and meteorological data for these stations for use by scientists, government agencies, educators, students, and the private sector.

Organization

UNAVCO was organized into three programs. The three programs focused on:

Geodetic Infrastructure

The Geodetic Infrastructure (GI) program integrated all geodetic infrastructure and data acquisition capabilities for continuously operating observational networks and shorter-term deployments. Supported activities included development and testing, advanced systems engineering, the construction, operation, and maintenance of permanent geodetic instrument networks around the globe. Major projects supported by the GI program included the 1,112 station Plate Boundary Observatory (PBO), Polar networks in Greenland and Antarctica (GNET and ANET, together known as POLENET), COCONet spanning the Caribbean plate boundary, the multi-disciplinary AfricaArray, and several other smaller continuously observing geodetic networks.

Geodetic Data Services

Geodetic Data Services (GDS) program provided services for the long-term stewardship of data sets. These services organized, managed, and archived data, and developed tools for data access and interpretation. Services were provided for GNSS/GPS data, imaging data, strain and seismic data, and meteorological data. The UNAVCO Data Archive included more than 2,300 continuous GNSS/GPS stations.

Education and Community Engagement

The Education and Community Engagement program provided services to communicate the scientific results of the geodetic community, foster education, and grow workforce development and international partnerships. Particular focus was given to providing training, developing educational materials, and facilitating technical short courses to scientists studying geodesy. The program also supported formal education (K-12) and informal public outreach through workshops, educational materials for secondary students and undergraduate level courses, museum displays, and social media interactions.

UNAVCO supported geo-workforce development through undergraduate internship programs, graduate student mentoring, and online resources. This included the Research Experience in the Solid Earth Science for Students (RESESS) internship program. RESESS was a summer internship program dedicated to increasing the diversity of students entering the geosciences. [5]

Membership and governance

UNAVCO Members were educational or non-profit institutions chartered in the United States (US) or its Territories with a commitment to scholarly research involving the application of high precision geodesy to Earth science or related fields. Associate Membership was available to organizations other than U.S. educational institutions, when those organizations shared UNAVCO's mission and otherwise met the qualifications for membership.

A board of directors was charged with UNAVCO oversight and governance and was elected by designated representatives of UNAVCO member institutions. Advisory committees for each of the three programs guided the focus of the programs.

Science

Space-based geodetic observations have enabled measurement of the motions of the Earth's surface and crust at many different scales, leading to discoveries in continental deformation, plate boundary processes, the earthquake cycle, continental groundwater storage, and hydrologic loading.

Solid earth

The Earth's tectonic plates are continuously in motion, though so slowly that even with the highest-precision instruments, months or years of observations are necessary to measure it. The advent of space-based geodetic techniques improved the ability to measure tectonic plate motion and to establish stable terrestrial and celestial reference frames required to improve accuracy. Geodetic research associated with earthquakes, volcanoes, and landslides aims to provide early warnings and mitigate future hazard events.

Cryosphere

Ice covers approximately 10% of Earth's land surface at the present, with most of the ice mass being contained in the Greenland and Antarctic continental ice sheets. Designing and undertaking geodetic experiments that enable researchers to improve the understanding of ice dynamics allows stronger predictions (through numerical models) of the response of the glaciers to changing climates. [6] [7] [8]

Environmental and hydrogeodesy

Because it is sensitive to mass redistribution and accurate distance measurements, geodesy contributes to research about issues relating to water and the environment. Geodetic observations enable researchers to follow the motion of water within Earth's system at global scales and to characterize changes in terrestrial groundwater storage at a variety of scales, ranging from continental-scale changes in water storage using gravity space missions, to regional and local changes using INSAR, GNSS, leveling, and relative gravity measurements of surface deformation accompanying aquifer-system compaction. [9] [10] [11]

Atmosphere

Space geodesy utilizes electromagnetic signals propagating through the atmosphere, providing information on tropospheric temperature and water vapor and on ionospheric electron density. [12] [13]

Related Research Articles

<span class="mw-page-title-main">Geodesy</span> Science of measuring the shape, orientation, and gravity of Earth

Geodesy or geodetics is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems. Geodesy is an earth science and many consider the study of Earth's shape and gravity to be central to that science. It is also a discipline of applied mathematics.

<span class="mw-page-title-main">Geophysics</span> Physics of the Earth and its vicinity

Geophysics is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. Geophysicists, who usually study geophysics, physics, or one of the Earth sciences at the graduate level, complete investigations across a wide range of scientific disciplines. The term geophysics classically refers to solid earth applications: Earth's shape; its gravitational, magnetic fields, and electromagnetic fields ; its internal structure and composition; its dynamics and their surface expression in plate tectonics, the generation of magmas, volcanism and rock formation. However, modern geophysics organizations and pure scientists use a broader definition that includes the water cycle including snow and ice; fluid dynamics of the oceans and the atmosphere; electricity and magnetism in the ionosphere and magnetosphere and solar-terrestrial physics; and analogous problems associated with the Moon and other planets.

<span class="mw-page-title-main">World Geodetic System</span> Geodetic reference system

The World Geodetic System (WGS) is a standard used in cartography, geodesy, and satellite navigation including GPS. The current version, WGS 84, defines an Earth-centered, Earth-fixed coordinate system and a geodetic datum, and also describes the associated Earth Gravitational Model (EGM) and World Magnetic Model (WMM). The standard is published and maintained by the United States National Geospatial-Intelligence Agency.

<span class="mw-page-title-main">Satellite laser ranging</span>

In satellite laser ranging (SLR) a global network of observation stations measures the round trip time of flight of ultrashort pulses of light to satellites equipped with retroreflectors. This provides instantaneous range measurements of millimeter level precision which can be accumulated to provide accurate measurement of orbits and a host of important scientific data. The laser pulse can also be reflected by the surface of a satellite without a retroreflector, which is used for tracking space debris.

<span class="mw-page-title-main">U.S. National Geodetic Survey</span> U.S. federal surveying and mapping agency

The National Geodetic Survey (NGS) is a United States federal agency based in Washington, D.C. that defines and manages a national coordinate system, providing the foundation for transportation and communication, mapping and charting, and a large number of science and engineering applications. Since its founding in 1970, it has been part of the National Oceanic and Atmospheric Administration (NOAA), a division within the Department of Commerce.

<span class="mw-page-title-main">International Terrestrial Reference System and Frame</span> World spatial reference system co-rotating with the Earth in its diurnal motion in space

The International Terrestrial Reference System (ITRS) describes procedures for creating reference frames suitable for use with measurements on or near the Earth's surface. This is done in much the same way that a physical standard might be described as a set of procedures for creating a realization of that standard. The ITRS defines a geocentric system of coordinates using the SI system of measurement.

<span class="mw-page-title-main">Satellite geodesy</span> Measurement of the Earth using satellites

Satellite geodesy is geodesy by means of artificial satellites—the measurement of the form and dimensions of Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques. It belongs to the broader field of space geodesy. Traditional astronomical geodesy is not commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.

<span class="mw-page-title-main">EarthScope</span> Earth science program exploring the structure of the North American continent

The EarthScope project (2003-2018) was an National Science Foundation (NSF) funded Earth science program using geological and geophysical techniques to explore the structure and evolution of the North American continent and to understand the processes controlling earthquakes and volcanoes. The project had three components: USArray, the Plate Boundary Observatory, and the San Andreas Fault Observatory at Depth. Organizations associated with the project included UNAVCO, the Incorporated Research Institutions for Seismology (IRIS), Stanford University, the United States Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Several international organizations also contributed to the initiative. EarthScope data are publicly accessible.

<span class="mw-page-title-main">Plate Boundary Observatory</span>

The Plate Boundary Observatory (PBO) was the geodetic component of the EarthScope Facility. EarthScope was an Earth science program that explored the 4-dimensional structure of the North American Continent. EarthScope was a 15-year project (2003-2018) funded by the National Science Foundation (NSF) in conjunction with NASA. PBO construction took place from October 2003 through September 2008. Phase 1 of operations and maintenance concluded in September 2013. Phase 2 of operations ended in September 2018, along with the end of the EarthScope project. In October 2018, PBO was assimilated into a broader Network of the Americas (NOTA), along with networks in Mexico (TLALOCNet) and the Caribbean (COCONet), as part of the NSF's Geodetic Facility for the Advancement of Geosciences (GAGE). GAGE is operated by EarthScope Consortium.

<span class="mw-page-title-main">North American Datum</span> Reference frame for geodesy on the continent

The North American Datum (NAD) is the horizontal datum now used to define the geodetic network in North America. A datum is a formal description of the shape of the Earth along with an "anchor" point for the coordinate system. In surveying, cartography, and land-use planning, two North American Datums are in use for making lateral or "horizontal" measurements: the North American Datum of 1927 (NAD 27) and the North American Datum of 1983 (NAD 83). Both are geodetic reference systems based on slightly different assumptions and measurements.

<span class="mw-page-title-main">UNSW School of Surveying and Geospatial Engineering</span>

The UNSW School of Surveying and Geospatial Engineering (SAGE), part of the UNSW Faculty of Engineering, was founded in 1970 and disestablished in 2013.

<span class="mw-page-title-main">Geodetic Observatory Wettzell</span>

The Geodetic Observatory Wettzell is located atop the 616 meter-high mountain Wagnerberg, west of the village Wettzell in the German district Cham in the Bavarian Forest.

<span class="mw-page-title-main">Kristine M. Larson</span> American geophysicist

Kristine Marie Larson is an American academic. She is Emeritus Professor of Aerospace Engineering at the University of Colorado Boulder. Her research considers the development of algorithms for high-precision Global Positioning System (GPS) data analysis. She was the first to demonstrate that GPS could be used to detect seismic waves. She was awarded the 2015 European Geosciences Union Christiaan Huygens Medal.

Thomas A. Herring is a geophysicist, known for developing and applying systems of space geodesy to high-precision geophysical measurements and geodynamic research.

Tonie Marie van Dam is an American geophysicist and geodesist, known for her pioneering research on solid Earth deformations due to loads from atmospheric and hydrologic pressures. She and her collaborators used space geodetic observations and modeling for increased precision in measuring and understanding such loads.

<span class="mw-page-title-main">EarthScope Consortium</span> Geophysical science support organization

EarthScope Consortium is a 501(c)(3) nonprofit geophysical science support organization. EarthScope Consortium operates two of the National Science Foundation's (NSF) major research facilities, the NSF Geodetic Facility for the Advancement of Geoscience (GAGE) and the NSF Seismological Facility for the Advancement of Geoscience (SAGE), which provide geophysical instrumentation, data access, and services to support geoscience research and education.

The U.S. National Science Foundation's Geodetic Facility for the Advancement of Geoscience is a geophysical facility for geoscience research and education. It focuses on research of Earth's surface deformation with enhanced temporal and spatial resolution—the field of geodesy. GAGE is one of the two premier geophysical facilities in support of geoscience and geoscience education of the National Science Foundation (NSF). The other geophysical facility is the Seismological Facility for the Advancement of Geoscience.

The Polar Earth Observing Network (POLENET) is a global network involving researchers from 24 nations for the geophysical observation of the polar regions of our planet.

Continuously Operating Caribbean GPS Observational Network (COCONet) was a global positioning system (GPS) observation network that spanned across the Caribbean and the neighboring area It was part of UNAVCO (University Navstar Corporation). UNAVCO and IRIS (Incorporated Research Institutions for Seismology) Consortium later merged to create EarthScope Consortium in 2023.

The EarthScope Primary Instrument Center is a research center at New Mexico Institute of Mining and Technology for geophysics research in Earth system science. The facility provides instrumentation and support services for seismology experiments around the world, as well as those for the National Science Foundation and the U.S. Department of Energy.

References

  1. Evolution of Mid‐latitude Density Irregularities and Scintillation in North America During the 7–8 September 2017 Storm - Nishimura - 2021 - Journal of Geophysical Research: Space Physics - Wiley Online Library
  2. "Joining Forces". sites.google.com. Retrieved 2022-06-11.
  3. "NASA Global GNSS Network Support". NSF GAGE. Retrieved 3 October 2024.
  4. "Project Overview". NASA Space Geodesy Project. Retrieved 3 October 2024.
  5. Charlevoix & Morris Increasing Diversity in Geoscience Through Research Internships, EOS 95(8), 69–70(2014)
  6. Khan, SA, J Wahr, E Leuliette, T van Dam, KM Larson and O Francis (2008), Geodetic measurements of postglacial adjustments in Greenland. J. Geophys. Res.-Solid Earth, 113 (B2), Art. No. B02402, ISSN   0148-0227, ids: 263SI, doi : 10.1029/2007JB004956, Published 14 – Feb 2008.
  7. Willis, M. J., A. K. Melkonian, M. E. Pritchard, and S. A. Bernstein (2010) Remote sensing of velocities and elevation changes at outlet glaciers of the northern Patagonian Icefield, Chile (abstract), Ice and Climate Change Conference: A View from the South, Valdivia, Chile
  8. Melkonian, A. K., M. J. Willis, M. E. Pritchard, and S. A. Bernstein (2009) Glacier velocities and elevation change of the Juneau Icefield, Alaska (abstract C51B-0490,), AGU Fall meeting.
  9. Larson, K.M. and F.G. Nievinski, GPS Snow Sensing: Results from the EarthScope Plate Boundary Observatory, GPS Solutions, doi : 10.1007/s10291-012-0259-7
  10. Gutmann, E., K. M. Larson, M. Williams, F. G. Nievinski, and V. Zavorotny, Snow measurement by GPS interferometric reflectometry: an evaluation at Niwot Ridge, Colorado, Hydrologic Processes, doi : 10.1002/hyp.8329, 2011.
  11. Small, E.E., K.M. Larson, and J. J. Braun, Sensing Vegetation Growth Using Reflected GPS Signals, Geophys. Res. Lett. 37, L12401, doi : 10.1029/2010GL042951, 2010.
  12. Wang, J., L. Zhang, A. Dai, F. Immler, M. Sommer and H. Voemel, 2012: Radiation dry bias correction of Vaisala RS92 humidity data and its impacts on historical radiosonde data. J. Atmos. Oceanic Technol., to be submitted.
  13. Mears, C., J. Wang, S. Ho, L. Zhang and X. Zhou, 2012: Total column water vapor, in State of the Climate in 2011. Bull. Amer. Meteorol. Soc., in press.