The UNIFAC method (UNIQUAC Functional-group Activity Coefficients) [1] is a semi-empirical system for the prediction of non-electrolyte activity in non-ideal mixtures. UNIFAC uses the functional groups present on the molecules that make up the liquid mixture to calculate activity coefficients. By using interactions for each of the functional groups present on the molecules, as well as some binary interaction coefficients, the activity of each of the solutions can be calculated. This information can be used to obtain information on liquid equilibria, which is useful in many thermodynamic calculations, such as chemical reactor design, and distillation calculations.
The UNIFAC model was first published in 1975 by Fredenslund, Jones and John Prausnitz, a group of chemical engineering researchers from the University of California. Subsequently they and other authors have published a wide range of UNIFAC papers, extending the capabilities of the model; this has been by the development of new or revision of existing UNIFAC model parameters. UNIFAC is an attempt by these researchers to provide a flexible liquid equilibria model for wider use in chemistry, the chemical and process engineering disciplines.
A particular problem in the area of liquid-state thermodynamics is the sourcing of reliable thermodynamic constants. These constants are necessary for the successful prediction of the free energy state of the system; without this information it is impossible to model the equilibrium phases of the system.
Obtaining this free energy data is not a trivial problem, and requires careful experiments, such as calorimetry, to successfully measure the energy of the system. Even when this work is performed it is infeasible to attempt to conduct this work for every single possible class of chemicals, and the binary, or higher, mixtures thereof. To alleviate this problem, free energy prediction models, such as UNIFAC, are employed to predict the system's energy based on a few previously measured constants.
It is possible to calculate some of these parameters using ab initio methods like COSMO-RS, but results should be treated with caution, because ab initio predictions can be off. Similarly, UNIFAC can be off, and for both methods it is advisable to validate the energies obtained from these calculations experimentally.
The UNIFAC correlation attempts to break down the problem of predicting interactions between molecules by describing molecular interactions based upon the functional groups attached to the molecule. This is done in order to reduce the sheer number of binary interactions that would be needed to be measured to predict the state of the system.
The activity coefficient of the components in a system is a correction factor that accounts for deviations of real systems from that of an Ideal solution, which can either be measured via experiment or estimated from chemical models (such as UNIFAC). By adding a correction factor, known as the activity (, the activity of the ith component) to the liquid phase fraction of a liquid mixture, some of the effects of the real solution can be accounted for. The activity of a real chemical is a function of the thermodynamic state of the system, i.e. temperature and pressure.
Equipped with the activity coefficients and a knowledge of the constituents and their relative amounts, phenomena such as phase separation and vapour-liquid equilibria can be calculated. UNIFAC attempts to be a general model for the successful prediction of activity coefficients.
The UNIFAC model splits up the activity coefficient for each species in the system into two components; a combinatorial and a residual component . For the -th molecule, the activity coefficients are broken down as per the following equation:
In the UNIFAC model, there are three main parameters required to determine the activity for each molecule in the system. Firstly there are the group surface area and volume contributions obtained from the Van der Waals surface area and volumes. These parameters depend purely upon the individual functional groups on the host molecules. Finally there is the binary interaction parameter , which is related to the interaction energy of molecular pairs (equation in "residual" section). These parameters must be obtained either through experiments, via data fitting or molecular simulation.
The combinatorial component of the activity is contributed to by several terms in its equation (below), and is the same as for the UNIQUAC model.
where and are the molar weighted segment and area fractional components for the -th molecule in the total system and are defined by the following equation; is a compound parameter of , and . is the coordination number of the system, but the model is found to be relatively insensitive to its value and is frequently quoted as a constant having the value of 10.
and are calculated from the group surface area and volume contributions and (Usually obtained via tabulated values) as well as the number of occurrences of the functional group on each molecule such that:
The residual component of the activity is due to interactions between groups present in the system, with the original paper referring to the concept of a "solution-of-groups". The residual component of the activity for the -th molecule containing unique functional groups can be written as follows:
where is the activity of an isolated group in a solution consisting only of molecules of type . The formulation of the residual activity ensures that the condition for the limiting case of a single molecule in a pure component solution, the activity is equal to 1; as by the definition of , one finds that will be zero. The following formula is used for both and
In this formula is the summation of the area fraction of group , over all the different groups and is somewhat similar in form, but not the same as . is the group interaction parameter and is a measure of the interaction energy between groups. This is calculated using an Arrhenius equation (albeit with a pseudo-constant of value 1). is the group mole fraction, which is the number of groups in the solution divided by the total number of groups.
is the energy of interaction between groups m and n, with SI units of joules per mole and R is the ideal gas constant. Note that it is not the case that , giving rise to a non-reflexive parameter. The equation for the group interaction parameter can be simplified to the following:
Thus still represents the net energy of interaction between groups and , but has the somewhat unusual units of absolute temperature (SI kelvins). These interaction energy values are obtained from experimental data, and are usually tabulated.
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.
In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It is named after Swedish mathematician Waloddi Weibull, who described it in detail in 1951, although it was first identified by Fréchet and first applied by Rosin & Rammler (1933) to describe a particle size distribution.
In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-square distribution are special cases of the gamma distribution. There are two different parameterizations in common use:
The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.
In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.
Directional statistics is the subdiscipline of statistics that deals with directions, axes or rotations in Rn. More generally, directional statistics deals with observations on compact Riemannian manifolds including the Stiefel manifold.
An activity coefficient is a factor used in thermodynamics to account for deviations from ideal behaviour in a mixture of chemical substances. In an ideal mixture, the microscopic interactions between each pair of chemical species are the same and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law. Deviations from ideality are accommodated by modifying the concentration by an activity coefficient. Analogously, expressions involving gases can be adjusted for non-ideality by scaling partial pressures by a fugacity coefficient.
The principle of detailed balance can be used in kinetic systems which are decomposed into elementary processes. It states that at equilibrium, each elementary process is in equilibrium with its reverse process.
The non-random two-liquid model is an activity coefficient model that correlates the activity coefficients of a compound with its mole fractions in the liquid phase concerned. It is frequently applied in the field of chemical engineering to calculate phase equilibria. The concept of NRTL is based on the hypothesis of Wilson that the local concentration around a molecule is different from the bulk concentration. This difference is due to a difference between the interaction energy of the central molecule with the molecules of its own kind and that with the molecules of the other kind . The energy difference also introduces a non-randomness at the local molecular level. The NRTL model belongs to the so-called local-composition models. Other models of this type are the Wilson model, the UNIQUAC model, and the group contribution model UNIFAC. These local-composition models are not thermodynamically consistent for a one-fluid model for a real mixture due to the assumption that the local composition around molecule i is independent of the local composition around molecule j. This assumption is not true, as was shown by Flemr in 1976. However, they are consistent if a hypothetical two-liquid model is used.
The enthalpy of mixing is the enthalpy liberated or absorbed from a substance upon mixing. When a substance or compound is combined with any other substance or compound the enthalpy of mixing is the consequence of the new interactions between the two substances or compounds. This enthalpy if released exothermically can in an extreme case cause an explosion.
UNIQUAC is an activity coefficient model used in description of phase equilibria. The model is a so-called lattice model and has been derived from a first order approximation of interacting molecule surfaces in statistical thermodynamics. The model is however not fully thermodynamically consistent due to its two liquid mixture approach. In this approach the local concentration around one central molecule is assumed to be independent from the local composition around another type of molecule.
The Langmuir adsorption model explains adsorption by assuming an adsorbate behaves as an ideal gas at isothermal conditions. According to the model, adsorption and desorption are reversible processes. This model even explains the effect of pressure i.e at these conditions the adsorbate's partial pressure, , is related to the volume of it, V, adsorbed onto a solid adsorbent. The adsorbent, as indicated in the figure, is assumed to be an ideal solid surface composed of a series of distinct sites capable of binding the adsorbate. The adsorbate binding is treated as a chemical reaction between the adsorbate gaseous molecule and an empty sorption site, S. This reaction yields an adsorbed species with an associated equilibrium constant :
In probability theory and directional statistics, a wrapped normal distribution is a wrapped probability distribution that results from the "wrapping" of the normal distribution around the unit circle. It finds application in the theory of Brownian motion and is a solution to the heat equation for periodic boundary conditions. It is closely approximated by the von Mises distribution, which, due to its mathematical simplicity and tractability, is the most commonly used distribution in directional statistics.
An osmotic coefficient is a quantity which characterises the deviation of a solvent from ideal behaviour, referenced to Raoult's law. It can be also applied to solutes. Its definition depends on the ways of expressing chemical composition of mixtures.
In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.
Pitzer equations are important for the understanding of the behaviour of ions dissolved in natural waters such as rivers, lakes and sea-water. They were first described by physical chemist Kenneth Pitzer. The parameters of the Pitzer equations are linear combinations of parameters, of a virial expansion of the excess Gibbs free energy, which characterise interactions amongst ions and solvent. The derivation is thermodynamically rigorous at a given level of expansion. The parameters may be derived from various experimental data such as the osmotic coefficient, mixed ion activity coefficients, and salt solubility. They can be used to calculate mixed ion activity coefficients and water activities in solutions of high ionic strength for which the Debye–Hückel theory is no longer adequate. They are more rigorous than the equations of specific ion interaction theory, but Pitzer parameters are more difficult to determine experimentally than SIT parameters.
MOSCED is a thermodynamic model for the estimation of limiting activity coefficients. From a historical point of view MOSCED can be regarded as an improved modification of the Hansen method and the Hildebrand solubility model by adding higher interaction term such as polarity, induction and separation of hydrogen bonding terms. This allows the prediction of polar and associative compounds, which most solubility parameter models have been found to do poorly. In addition to making quantitative prediction, MOSCED can be used to understand fundamental molecular level interaction for intuitive solvent selection and formulation.
VTPR is an estimation method for the calculation of phase equilibria of mixtures of chemical components. The original goal for the development of this method was to enable the estimation of properties of mixtures which contain supercritical components. These class of substances couldn't be predicted with established models like UNIFAC.
COSMO-RS is a quantum chemistry based equilibrium thermodynamics method with the purpose of predicting chemical potentials µ in liquids. It processes the screening charge density σ on the surface of molecules to calculate the chemical potential µ of each species in solution. Perhaps in dilute solution a constant potential must be considered. As an initial step a quantum chemical COSMO calculation for all molecules is performed and the results are stored in a database. In a separate step COSMO-RS uses the stored COSMO results to calculate the chemical potential of the molecules in a liquid solvent or mixture. The resulting chemical potentials are the basis for other thermodynamic equilibrium properties such as activity coefficients, solubility, partition coefficients, vapor pressure and free energy of solvation. The method was developed to provide a general prediction method with no need for system specific adjustment.
The Pomeranchuk instability is an instability in the shape of the Fermi surface of a material with interacting fermions, causing Landau’s Fermi liquid theory to break down. It occurs when a Landau parameter in Fermi liquid theory has a sufficiently negative value, causing deformations of the Fermi surface to be energetically favourable. It is named after the Soviet physicist Isaak Pomeranchuk.