The Underground Research Laboratory was a test site for deep geological repository of nuclear waste operated by Atomic Energy of Canada Limited's (AECL's) Whiteshell Laboratories near Lac du Bonnet in Manitoba, Canada. The site was built inside a large granite batholith, typical of the Canadian Shield. The site was selected in 1980, construction began in 1982 and it opened in 1985. No radioactive material was stored at the site, it was used purely for measurements of water exchange, rock movement, and other issues that would affect the safety of such materials. The site was also used by a variety of international users. As part of the wider wind-down of AECL activities, the decision was made to close the URL in 2003. Cleanup work began in 2006 and completed in 2010. The site continues to host a single international experiment measuring water leakage through a massive clay plug.
Through the 1970s the issue of storing nuclear waste became a serious concern within the nuclear industry. The rocks of the Canadian Shield, many of which have been physically unchanged for billions of years, seemed like a natural candidate for such storage. The fact that high-grade nuclear fuel was held in such formations for billions of years in nature was especially attractive; such deposits, like at Cigar Lake in northern Saskatchewan, were powerful evidence that this mode of storage was secure for geological time frames. [1]
In 1978, the governments of Canada and Ontario agreed to fund the "Nuclear Fuel Waste Management Program" (NFWMP) to consider the deep geological repository as a solution to the growing inventory of spent fuel. [1] At the time, it was estimated the fleet of CANDU reactors would produce 3.6 million fuel bundles by the end of life of existing reactors. Organized by the Atomic Energy Control Board (AECB), AECL was tasked with developing the required technology, while Ontario Hydro would pay for the actual storage and be responsible for transport of the waste to and from a production site. An updated agreement was signed in 1981, with the explicit instructions that no nuclear material would ever be placed in the experimental site. [2]
AECL's original plans for long-term waste disposal was a three-stage process; in the first stage the fuel would be stored in the existing spent fuel pools located at the reactor sites for a period of six to ten years. [3] After that time the overall decay rates have decreased to the point where it can be safely moved. For the second stage, the fuel would be placed in an underground facility for a period of about 300 years. By that time the most active gamma ray emitters have burned off and the fuel becomes much safer to handle. The final stage would see the fuel moved to surface sites, but over time this was abandoned and the entire time was to be spent underground. [2]
Building the underground portion in the Canadian Shield eliminated concerns about geological events exposing the waste en masse; it is easy to find large batholiths that have been intact for billions of years. However, these also include fractures of various sizes and the nature of water movement through these sorts of rock formation was a topic of limited research. In 1978, the NFWMP decided to build a test site to answer two primary questions, one was to characterize the water flow and chemistry in ancient rocks of this type, and the other was to test a proposed sealing system that consisted of a layer of clay sandwiched between engineered concrete walls. [4]
Whiteshell, built on top of the 1400 km2 2.6 BYa Lac du Bonnet batholith, [5] was asked to find a suitable site. The criterion was that there was at least one square kilometre of partially exposed rock on the surface, that it had not previously been used for excavation, that there was power available, and that it was within reasonable distance of Whiteshell. A total of eight sites were considered before one about 50 kilometres (31 mi) northeast of Whiteshell was selected, part of the same batholith. [5]
Between 1980 and 1983 a series of seven deep boreholes and many smaller ones were made around the site to characterize it. [5] The shaft surface site was built during 1982 and 1983, and the first major digging began on 12 May 1984. The first level, 240 Level, was completed in 1987, along with the secondary ventilation shaft. The main shaft was extended to 443 m deep by 1988, and the excavation of the 420 Level was completed in 1991. In total, 34,270 cubic metres were excavated [6] for a total cost of about $40 million. [7]
The first set of nine major experiments was designed in 1989 and began operations in 1990. Some of these involved measurements of the flow of water in the various rock formations, while others were concerned with the engineered seals and container technologies. [6] Many new experiments joined the original series, including ones on blast effects from nearby mining operations, as well as evacuations. [6] New groups from the US, Japan and France were collaborating on new experiments like the Tunnel Sealing Experiment and the Quarried Block Radionuclide Migration Experiment. [8] The University of Toronto also ran the "mine-by" experiment on the effects of excavating within an existing mine site. [9]
The AECL decided to close the Whiteshell facility in 1994 and had started the process of winding down operations. In 1996, the AECL held public hearings to present the results from many of the original URL experiments. Although they found some concerns in the research, the AECB decided enough was known to move ahead to begin selecting a production repository site. [1] In 1997, Ontario Hydro took over the experiments related to long-term storage, including many of the experiments at the URL, reorganized as the Deep Geologic Repository Technology Program (DGRTP). Yearly costs for the URL were on the order of $3 million with incomes on the order of $9 to $10 million, although about 70% of that was from Ontario Hydro. Ontario Hydro, which became Ontario Power Generation in 1999, announced its intention to stop funding research at the site, in favour of moving forward with production. [7]
In 2003, AECL announced it would be shutting down the URL, unless a buyer or tenant could be found. This did not happen, and the site was officially closed in June 2003. [7] Closure work began in 2006, removing equipment from the now unused levels. By the time this process was complete in 2010, all that remained was the tracks used by the underground railway system. A large plug made of clay sandwiched between two plates of high-performance concrete was placed in the main shaft in an ongoing experiment to measure the performance of the plug as a way of blocking the flow of water between aquifers. [10]
The site consisted of a main shaft 433 metres (1,421 ft) deep with two main working levels at 240 metres (790 ft) and 420 metres (1,380 ft). Smaller levels were constructed at 130 metres (430 ft) and 300 metres (980 ft) as drilling support sites. A ventilation shaft carrying propane-heated air paralleled the main shaft. [11]
The levels were built because the rock formation includes two aquifers, a freshwater one at higher levels and a saltwater one deeper. A key concern for the URL was developing technologies to prevent mixing of the two aquifers. [8]
The ultimate result of the URL was a ten-volume Environmental Impact Statement about the entire deep geologic repository concept. [4]
Pickering Nuclear Generating Station is a Canadian nuclear power station located on the north shore of Lake Ontario in Pickering, Ontario. It is one of the oldest nuclear power stations in the world and Canada's third-largest, with eight CANDU reactors. Since 2003, two of these units have been defueled and deactivated. The remaining six produce about 16% of Ontario's power and employ 3,000 workers.
Chalk River Laboratories is a Canadian nuclear research facility in Deep River, about 180 km (110 mi) north-west of Ottawa.
Atomic Energy of Canada Limited (AECL) is a Canadian federal Crown corporation and Canada's largest nuclear science and technology laboratory. AECL developed the CANDU reactor technology starting in the 1950s, and in October 2011 licensed this technology to Candu Energy.
Darlington Nuclear Generating Station is a Canadian nuclear power station located on the north shore of Lake Ontario in Clarington, Ontario. It is a large nuclear facility comprising four CANDU nuclear reactors with a total output of 3,512 MWe when all units are online, providing about 20 percent of Ontario's electricity needs, enough to serve a city of two million people. The reactor design is significantly more powerful than those used in previous CANDU sites at Pickering and Bruce, making its 4-unit plant the second-largest in Canada behind the 8-unit Bruce. It is named for the Township of Darlington, the name of the municipality in which it is located, which is now part of the amalgamated Municipality of Clarington.
The SLOWPOKE is a family of low-energy, tank-in-pool type nuclear research reactors designed by Atomic Energy of Canada Limited (AECL) beginning in the late 1960s. John W. Hilborn is the scientist most closely associated with their design. They are beryllium-reflected with a very low critical mass, but provide neutron fluxes higher than available from a small particle accelerator or other radioactive sources.
The Whiteshell Laboratories, originally known as the Whiteshell Nuclear Research Establishment (WNRE) was an Atomic Energy of Canada (AECL) laboratory in Manitoba, northeast of Winnipeg. It was originally built as a home for the experimental WR-1 reactor, but over time came to host a variety of experimental systems, including a SLOWPOKE reactor and the Underground Research Laboratory to study nuclear waste disposal. Employment peaked in the early 1970s at about 1,300, but during the 1980s the experiments began to wind down, and in 2003 the decision was made to close the site. As of 2017 the site is undergoing decommissioning with a planned completion date in 2024. The decommissioning process for WR-1 involves transporting low-level nuclear waste to another Canadian Nuclear Laboratories (CNL) research site, Chalk River Laboratories in Ottawa for containment, and encasing the reactor in concrete. The details of this process continue to be criticized, evaluated, and revised.
The Nuclear Waste Policy Act of 1982 is a United States federal law which established a comprehensive national program for the safe, permanent disposal of highly radioactive wastes.
Nuclear Power Demonstration was the first Canadian nuclear power reactor, and the prototype for the CANDU reactor design. Built by Canadian General Electric, in partnership with Atomic Energy of Canada Limited (AECL) and the Hydro Electric Power Commission of Ontario it consisted of a single 22 MWe pressurized heavy water reactor (PHWR) unit located in Rolphton, Ontario, not far from AECL's Chalk River Laboratories. NPD was owned by AECL and operated by Ontario Hydro.
Nuclear power in Canada is provided by 19 commercial reactors with a net capacity of 13.5 gigawatt (GW), producing a total of 95.6 terawatt-hours (TWh) of electricity, which accounted for 16.6% of the country's total electric energy generation in 2015. All but one of these reactors are located in Ontario, where they produced 61% of the province's electricity in 2019. Seven smaller reactors are used for research and to produce radiopharmaceuticals for use in nuclear medicine.
The Whiteshell Reactor No. 1, or WR-1, was a Canadian research reactor located at AECL's Whiteshell Laboratories (WNRL) in Manitoba. Originally known as Organic-Cooled Deuterium-Reactor Experiment (OCDRE), it was built to test the concept of a CANDU-type reactor that replaced the heavy water coolant with an oil substance. This had a number of potential advantages in terms of cost and efficiency.
A deep geological repository is a way of storing hazardous or radioactive waste within a stable geologic environment, typically 200–1,000 m deep. It entails a combination of waste form, waste package, engineered seals and geology that is suited to provide a high level of long-term isolation and containment without future maintenance. This will prevent any radioactive dangers. A number of mercury, cyanide and arsenic waste repositories are operating worldwide including Canada and Germany. Radioactive waste storage sites are under construction with the Onkalo in Finland being the most advanced.
The Meuse/Haute Marne Underground Research Laboratory is a laboratory located 500 metres underground in Bure in the Meuse département. It allows study of the geological formation in order to evaluate its capacity for deep geological repository of high-level and long-lived medium-level radioactive waste. It is managed by the National Agency for the Management of Radioactive Waste or ANDRA.
Madawaska Mine (previously known as Faraday Mine) is a decommissioned underground uranium mine in Faraday, near the town of Bancroft, Ontario, which produced 9 million pounds (4,082 tonnes) of U3O8 concentrate, at an average ore grade of 0.1074%, during its two periods of production.
Ontario Power Generation Inc. (OPG) is a Crown corporation and "government business enterprise" that is responsible for approximately half of the electricity generation in the province of Ontario, Canada. It is wholly owned by the government of Ontario. Sources of electricity include nuclear, hydroelectric, wind, gas and biomass. Although Ontario has an open electricity market, the provincial government, as OPG's sole shareholder, regulates the price the company receives for its electricity to be less than the market average, in an attempt to stabilize prices. Since 1 April 2008, the company's rates have been regulated by the Ontario Energy Board.
High-level radioactive waste management addresses the handling of radioactive materials generated from nuclear power production and nuclear weapons manufacture. Radioactive waste contains both short-lived and long-lived radionuclides, as well as non-radioactive nuclides. In 2002, the United States stored approximately 47,000 tonnes of high-level radioactive waste.
The Deep Geologic Repository Project (DGR) was a proposal by Ontario Power Generation (OPG) in 2002 for the site preparation, construction, operation, decommissioning and abandonment of a deep geological radioactive waste disposal facility for low and intermediate-level radioactive waste (L&ILW). In 2005, the municipality of Kincardine, Ontario volunteered to host the facility located on the Bruce nuclear generating station adjacent to OPG's Western Waste Management Facility (WWMF). The facility would have managed L&ILW produced from the continued operation of OPG-owned nuclear generating stations at the Bruce, Pickering Nuclear Generating Station and Darlington Nuclear Generating Station in Ontario. In May 2020, after 15 years of environmental assessment, OPG withdrew its application for a construction license on Saugeen Ojibway Nation Territory.
Nuclear industry in Canada is an active business and research sector, producing about 15% of its electricity in nuclear power plants of domestic design. Canada is the world's largest exporter of uranium, and has the world's second largest proven reserves. Canada also exports nuclear technology within the terms of the Nuclear Non-proliferation Treaty, to which it is a signatory, and is the world's largest producer of radioactive medical isotopes.
The Onkalo spent nuclear fuel repository is a deep geological repository for the final disposal of spent nuclear fuel. It is near the Olkiluoto Nuclear Power Plant in the municipality of Eurajoki, on the west coast of Finland. It will be the world's first long-term disposal facility for spent nuclear fuel. It is being constructed by Posiva, and is based on the KBS-3 method of nuclear waste burial developed in Sweden by Svensk Kärnbränslehantering AB (SKB). The facility is expected to be operational in the mid 2020s.
The Beishan Underground Research Laboratory is a deep geological repository for the disposal of spent nuclear fuel, currently under construction in the Gobi Desert, in Gansu, China. The facility is expected to take 7 years to build, with a planned operating period of 50 years, and cost approximately 2.7 billion yuan. It will reach 560 m (1,840 ft) below ground at its deepest point.
Uranium mining around Bancroft, Ontario, was conducted at four sites, beginning in the early 1950s and concluding by 1982. Bancroft was one of two major uranium-producing areas in Ontario, and one of seven in Canada, all located along the edge of the Canadian Shield. In the context of mining, the "Bancroft area" includes Haliburton, Hastings, and Renfrew counties, and all areas between Minden and Lake Clear. Activity in the mid-1950s was described by engineer A. S. Bayne in a 1977 report as the "greatest uranium prospecting rush in the world".