Viability assay

Last updated
This plated viability assay measures various yeast viability though a method called "frogging". The research is completed through drop-inoculation techniques. Research has since been conducted on "tadpoling", which is a variation of "frogging" that is completed by keeping the test cells diluted in liquid throughout their examination. Laboratoorne pagariparm (Saccharomyces cerevisiae) agariplaadil..JPG
This plated viability assay measures various yeast viability though a method called "frogging". The research is completed through drop-inoculation techniques. Research has since been conducted on "tadpoling", which is a variation of "frogging" that is completed by keeping the test cells diluted in liquid throughout their examination.

A viability assay is an assay that is created to determine the ability of organs, cells or tissues to maintain or recover a state of survival. [2] Viability can be distinguished from the all-or-nothing states of life and death by the use of a quantifiable index that ranges between the integers of 0 and 1 or, if more easily understood, the range of 0% and 100%. [3] Viability can be observed through the physical properties of cells, tissues, and organs. Some of these include mechanical activity, motility, such as with spermatozoa and granulocytes, the contraction of muscle tissue or cells, mitotic activity in cellular functions, and more. [3] Viability assays provide a more precise basis for measurement of an organism's level of vitality.

Contents

Viability assays can lead to more findings than the difference of living versus nonliving. These techniques can be used to assess the success of cell culture techniques, cryopreservation techniques, the toxicity of substances, or the effectiveness of substances in mitigating effects of toxic substances. [4]

Common methods

Though simple visual techniques of observing viability can be useful, it can be difficult to thoroughly measure an organism's/part of an organism's viability merely using the observation of physical properties. However, there are a variety of common protocols utilized for further observation of viability using assays.

Flow cytometry using 7-Aminoactinomycin D (7-AAD), wherein a lower signal indicates viable cells. Therefore, this case shows good viability (viability of the cells in flow cytometry should be around 95% but not less than 90%. ). Flow cytometric viability by 7-AAD.png
Flow cytometry using 7-Aminoactinomycin D (7-AAD), wherein a lower signal indicates viable cells. Therefore, this case shows good viability (viability of the cells in flow cytometry should be around 95% but not less than 90%. ).

As with many kinds of viability assays, quantitative measures of physiological function do not indicate whether damage repair and recovery is possible. [12] An assay of the ability of a cell line to adhere and divide may be more indicative of incipient damage than membrane integrity. [13]

Frogging and tadpoling

"Frogging" is a type of viability assay method that utilizes an agar plate for its environment and consists of plating serial dilutions by pinning them after they have been diluted in liquid. Some of its limitations include that it does not account for total viability and it is not particularly sensitive to low-viability assays; however, it is known for its quick pace. [1] "Tadpoling", which is a method practiced after the development of "frogging", is similar to the "frogging" method, but its test cells are diluted in liquid and then kept in liquid through the examination process. The "tadpoling" method can be used to measure culture viability accurately, which is what depicts its main separation from "frogging". [1]

List of viability assay methods

See also

Related Research Articles

Cryobiology is the branch of biology that studies the effects of low temperatures on living things within Earth's cryosphere or in science. The word cryobiology is derived from the Greek words κρῧος [kryos], "cold", βίος [bios], "life", and λόγος [logos], "word". In practice, cryobiology is the study of biological material or systems at temperatures below normal. Materials or systems studied may include proteins, cells, tissues, organs, or whole organisms. Temperatures may range from moderately hypothermic conditions to cryogenic temperatures.

Cytotoxicity is the quality of being toxic to cells. Examples of toxic agents are an immune cell or some types of venom, e.g. from the puff adder or brown recluse spider.

<span class="mw-page-title-main">Staining</span> Technique used to enhance visual contrast of specimens observed under a microscope

Staining is a technique used to enhance contrast in samples, generally at the microscopic level. Stains and dyes are frequently used in histology, in cytology, and in the medical fields of histopathology, hematology, and cytopathology that focus on the study and diagnoses of diseases at the microscopic level. Stains may be used to define biological tissues, cell populations, or organelles within individual cells.

<span class="mw-page-title-main">Flow cytometry</span> Lab technique in biology and chemistry

Flow cytometry (FC) is a technique used to detect and measure physical and chemical characteristics of a population of cells or particles.

<span class="mw-page-title-main">MTT assay</span> Colorimetric analysis for measuring activity of cellular enzymes that reduce a tetrazolium dye

The MTT assay is a colorimetric assay for assessing cell metabolic activity. NAD(P)H-dependent cellular oxidoreductase enzymes may, under defined conditions, reflect the number of viable cells present. These enzymes are capable of reducing the tetrazolium dye MTT, which is chemically 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, to its insoluble formazan, which has a purple color. Other closely related tetrazolium dyes including XTT, MTS and the WSTs, are used in conjunction with the intermediate electron acceptor, 1-methoxy phenazine methosulfate (PMS). With WST-1, which is cell-impermeable, reduction occurs outside the cell via plasma membrane electron transport. However, this traditionally assumed explanation is currently contended as proof has also been found of MTT reduction to formazan in lipidic cellular structures without apparent involvement of oxidoreductases.

<span class="mw-page-title-main">Hybridoma technology</span> Method for producing lots of identical antibodies

Hybridoma technology is a method for producing large numbers of identical antibodies. This process starts by injecting a mouse with an antigen that provokes an immune response. A type of white blood cell, the B cell, produces antibodies that bind to the injected antigen. These antibody producing B-cells are then harvested from the mouse and, in turn, fused with immortal myeloma cancer cells, to produce a hybrid cell line called a hybridoma, which has both the antibody-producing ability of the B-cell and the longevity and reproductivity of the myeloma. The hybridomas can be grown in culture, each culture starting with one viable hybridoma cell, producing cultures each of which consists of genetically identical hybridomas which produce one antibody per culture (monoclonal) rather than mixtures of different antibodies (polyclonal). The myeloma cell line that is used in this process is selected for its ability to grow in tissue culture and for an absence of antibody synthesis. In contrast to polyclonal antibodies, which are mixtures of many different antibody molecules, the monoclonal antibodies produced by each hybridoma line are all chemically identical.

A vital stain in a casual usage may mean a stain that can be applied on living cells without killing them. Vital stains have been useful for diagnostic and surgical techniques in a variety of medical specialties. In supravital staining, living cells have been removed from an organism, whereas intravital staining is done by injecting or otherwise introducing the stain into the body. The term vital stain is used by some authors to refer to an intravital stain, and by others interchangeably with a supravital stain, the core concept being that the cell being examined is still alive. In a more strict sense, the term vital staining has a meaning contrasting with supravital staining. While in supravital staining the living cells take up the stain, in "vital staining" – the most accepted but apparently paradoxical meaning of this term, the living cells exclude the stain i.e. stain negatively and only the dead cells stain positively and thus viability can be assessed by counting the percentage of total cells that stain negatively. Very bulky or highly charged stains that don't cross live plasma membrane are used as vital stains and supravital stains are those that are either small or are pumped actively into live cells. Since supravital and intravital nature of the staining depends on the dye, a combination of supravital and vital dyes can also be used in a sophisticated way to better classify cells into distinct subsets.

<span class="mw-page-title-main">Propidium iodide</span> Chemical compound

Propidium iodide is a fluorescent intercalating agent that can be used to stain cells and nucleic acids. PI binds to DNA by intercalating between the bases with little or no sequence preference. When in an aqueous solution, PI has a fluorescent excitation maximum of 493 nm (blue-green), and an emission maximum of 636 nm (red). After binding DNA, the quantum yield of PI is enhanced 20-30 fold, and the excitation/emission maximum of PI is shifted to 535 nm (green) / 617 nm (orange-red). Propidium iodide is used as a DNA stain in flow cytometry to evaluate cell viability or DNA content in cell cycle analysis, or in microscopy to visualize the nucleus and other DNA-containing organelles. Propidium Iodide is not membrane-permeable, making it useful to differentiate necrotic, apoptotic and healthy cells based on membrane integrity. PI also binds to RNA, necessitating treatment with nucleases to distinguish between RNA and DNA staining. PI is widely used in fluorescence staining and visualization of the plant cell wall.

A cryoprotectant is a substance used to protect biological tissue from freezing damage. Arctic and Antarctic insects, fish and amphibians create cryoprotectants in their bodies to minimize freezing damage during cold winter periods. Cryoprotectants are also used to preserve living materials in the study of biology and to preserve food products.

<span class="mw-page-title-main">Nitro blue tetrazolium chloride</span> Chemical compound

Nitro blue tetrazolium is a chemical compound composed of two tetrazole moieties. It is used in immunology for sensitive detection of alkaline phosphatase. NBT serves as the oxidant and BCIP is the AP-substrate.

<span class="mw-page-title-main">Ion transporter</span> Transmembrane protein that moves ions across a biological membrane

In biology, a transporter is a transmembrane protein that moves ions across a biological membrane to accomplish many different biological functions, including cellular communication, maintaining homeostasis, energy production, etc. There are different types of transporters including pumps, uniporters, antiporters, and symporters. Active transporters or ion pumps are transporters that convert energy from various sources—including adenosine triphosphate (ATP), sunlight, and other redox reactions—to potential energy by pumping an ion up its concentration gradient. This potential energy could then be used by secondary transporters, including ion carriers and ion channels, to drive vital cellular processes, such as ATP synthesis.

<span class="mw-page-title-main">Acridine orange</span> Organic dye used in biochemistry

Acridine orange is an organic compound that serves as a nucleic acid-selective fluorescent dye with cationic properties useful for cell cycle determination. Acridine orange is cell-permeable, which allows the dye to interact with DNA by intercalation, or RNA via electrostatic attractions. When bound to DNA, acridine orange is very similar spectrally to an organic compound known as fluorescein. Acridine orange and fluorescein have a maximum excitation at 502nm and 525 nm (green). When acridine orange associates with RNA, the fluorescent dye experiences a maximum excitation shift from 525 nm (green) to 460 nm (blue). The shift in maximum excitation also produces a maximum emission of 650 nm (red). Acridine orange is able to withstand low pH environments, allowing the fluorescent dye to penetrate acidic organelles such as lysosomes and phagolysosomes that are membrane-bound organelles essential for acid hydrolysis or for producing products of phagocytosis of apoptotic cells. Acridine orange is used in epifluorescence microscopy and flow cytometry. The ability to penetrate the cell membranes of acidic organelles and cationic properties of acridine orange allows the dye to differentiate between various types of cells. The shift in maximum excitation and emission wavelengths provides a foundation to predict the wavelength at which the cells will stain.

<span class="mw-page-title-main">Epithelial sodium channel</span> Group of membrane proteins

The epithelial sodium channel(ENaC), (also known as amiloride-sensitive sodium channel) is a membrane-bound ion channel that is selectively permeable to sodium ions (Na+). It is assembled as a heterotrimer composed of three homologous subunits α or δ, β, and γ, These subunits are encoded by four genes: SCNN1A, SCNN1B, SCNN1G, and SCNN1D. The ENaC is involved primarily in the reabsorption of sodium ions at the collecting ducts of the kidney's nephrons. In addition to being implicated in diseases where fluid balance across epithelial membranes is perturbed, including pulmonary edema, cystic fibrosis, COPD and COVID-19, proteolyzed forms of ENaC function as the human salt taste receptor.

Fluorescein diacetate (FDA) hydrolysis assays can be used to measure the enzyme activity of microbes in a sample. A bright yellow-green glow is produced and is strongest when enzymatic activity is greatest. This can be quantified using a spectrofluorometer or a spectrophotometer.

<span class="mw-page-title-main">Cryopreservation</span> Process to preserve biological matter

Cryopreservation or cryoconservation is a process where biological material - cells, tissues, or organs - are frozen to preserve the material for an extended period of time. At low temperatures any cell metabolism which might cause damage to the biological material in question is effectively stopped. Cryopreservation is an effective way to transport biological samples over long distances, store samples for prolonged periods of time, and create a bank of samples for users. Molecules, referred to as cryoprotective agents (CPAs), are added to reduce the osmotic shock and physical stresses cells undergo in the freezing process. Some cryoprotective agents used in research are inspired by plants and animals in nature that have unique cold tolerance to survive harsh winters, including: trees, wood frogs, and tardigrades.

<span class="mw-page-title-main">Resazurin</span> Chemical compound

Resazurin is a phenoxazine dye that is weakly fluorescent, nontoxic, cell-permeable, and redox‐sensitive. Resazurin has a blue to purple color above pH 6.5 and an orange color below pH 3.8. It is used in microbiological, cellular, and enzymatic assays because it can be irreversibly reduced to the pink-colored and highly fluorescent resorufin (7-Hydroxy-3H-phenoxazin-3-one). At circum-neutral pH, resorufin can be detected by visual observation of its pink color or by fluorimetry, with an excitation maximum at 530-570 nm and an emission maximum at 580-590 nm.

Semen cryopreservation is a procedure to preserve sperm cells. Semen can be used successfully indefinitely after cryopreservation. It can be used for sperm donation where the recipient wants the treatment in a different time or place, or as a means of preserving fertility for men undergoing vasectomy or treatments that may compromise their fertility, such as chemotherapy, radiation therapy or surgery. It is also often used by trans women prior to medically transitioning in ways that affect fertility, such as feminizing hormone therapy and orchiectomies.

Cell cycle analysis by DNA content measurement is a method that most frequently employs flow cytometry to distinguish cells in different phases of the cell cycle. Before analysis, the cells are usually permeabilised and treated with a fluorescent dye that stains DNA quantitatively, such as propidium iodide (PI) or 4,6-diamidino-2-phenylindole (DAPI). The fluorescence intensity of the stained cells correlates with the amount of DNA they contain. As the DNA content doubles during the S phase, the DNA content (and thereby intensity of fluorescence) of cells in the G0 phase and G1 phase (before S), in the S phase, and in the G2 phase and M phase (after S) identifies the cell cycle phase position in the major phases (G0/G1 versus S versus G2/M phase) of the cell cycle. The cellular DNA content of individual cells is often plotted as their frequency histogram to provide information about relative frequency (percentage) of cells in the major phases of the cell cycle.

The Cells Alive System (CAS) is a line of commercial freezers manufactured by ABI Corporation, Ltd. of Chiba, Japan claimed to preserve food with greater freshness than ordinary freezing by using electromagnetic fields and mechanical vibrations to limit ice crystal formation that destroys food texture. They also are claimed to increase tissue survival without having its water replaced by cryogenically compatible fluids; whether they have any effect is unclear. The freezers have attracted attention among organ banking and transplantation surgeons, as well as the food processing industry.

Complement-dependent cytotoxicity (CDC) is an effector function of IgG and IgM antibodies. When they are bound to surface antigen on target cell, the classical complement pathway is triggered by bonding protein C1q to these antibodies, resulting in formation of a membrane attack complex (MAC) and target cell lysis.

References

  1. 1 2 3 Welch AZ, Koshland DE (2013). "A simple colony-formation assay in liquid medium, termed 'tadpoling', provides a sensitive measure of Saccharomyces cerevisiae culture viability". Yeast. 30 (12): 501–509. doi:10.1002/yea.2989. ISSN   1097-0061. PMID   24185677. S2CID   21664332.
  2. Gavanji S, Bakhtari A, Famurewa AC, Othman EM (January 2023). "Cytotoxic Activity of Herbal Medicines as Assessed in Vitro: A Review". Chemistry & Biodiversity. 20 (2): 3–27. doi: 10.1002/cbdv.202201098 . PMID   36595710. S2CID   255473013.
  3. 1 2 Pegg DE (1989-06-01). "Viability assays for preserved cells, tissues, and organs". Cryobiology. 26 (3): 212–231. doi:10.1016/0011-2240(89)90016-3. ISSN   0011-2240. PMID   2743785.
  4. "Overview of Probes for Cell Viability, Cell Proliferation and Live-Cell Function—Section 15.1 - US". www.thermofisher.com. Retrieved 2020-03-04.
  5. 1 2 3 4 Niles AL, Moravec RA, Worzella TJ, Evans NJ, Riss TL (2013-03-04). "High-Throughput Screening Assays for the Assessment of Cytotoxicity". In Steinberg P (ed.). High-Throughput Screening Methods in Toxicity Testing. John Wiley & Sons, Inc. pp. 107–127. doi:10.1002/9781118538203.ch5. ISBN   978-1-118-53820-3.
  6. Lindner B, Seydel U (January 1983). "Mass spectrometric analysis of drug-induced changes in Na+ and K+ contents of single bacterial cells". Journal of General Microbiology. 129 (1): 51–5. doi: 10.1099/00221287-129-1-51 . PMID   6339677.
  7. Pichugin Y, Fahy GM, Morin R (April 2006). "Cryopreservation of rat hippocampal slices by vitrification". Cryobiology. 52 (2): 228–40. doi:10.1016/j.cryobiol.2005.11.006. PMID   16403489.
  8. "Flow cytometry (FACS) staining protocol (Cell surface staining)". Yale School of Medicine - Yale Flow Cytometry. Retrieved 2023-10-17.
  9. Henkelman S, Lagerberg JW, Graaff R, Rakhorst G, Van Oeveren W (November 2010). "The effects of cryopreservation on red blood cell rheologic properties". Transfusion. 50 (11): 2393–401. doi:10.1111/j.1537-2995.2010.02730.x. PMID   20561300. S2CID   22548108.
  10. Southard JH (June 1989). "Viability assays in organ preservation". Cryobiology. 26 (3): 232–8. doi:10.1016/0011-2240(89)90017-5. PMID   2663353.
  11. Davey HM (August 2011). "Life, death, and in-between: meanings and methods in microbiology". Applied and Environmental Microbiology. 77 (16): 5571–6. Bibcode:2011ApEnM..77.5571D. doi:10.1128/AEM.00744-11. PMC   3165249 . PMID   21705550.
  12. Crutchfield A, Diller K, Brand J (1999-02-01). "Cryopreservation of Chlamydomonas reinhardtii (Chlorophyta)". European Journal of Phycology. 34 (1): 43–52. doi:10.1080/09670269910001736072.
  13. Wusteman MC, Pegg DE, Robinson MP, Wang LH, Fitch P (February 2002). "Vitrification media: toxicity, permeability, and dielectric properties". Cryobiology. 44 (1): 24–37. doi:10.1016/S0011-2240(02)00002-0. PMID   12061845.

Further reading