Viatron

Last updated
Viatron Computer Systems Corporation
IndustryComputer
Founded1967;57 years ago (1967) in Bedford, Massachusetts
Founder
  • Edward M. Bennett
  • Dr. Joseph Spiegel
Defunct1971 (1971)
FateBankruptcy liquidation

Viatron Computer Systems Corporation, or simply Viatron was an American computer company headquartered in Bedford, Massachusetts, and later Burlington, Massachusetts. Viatron coined the term "microprocessor" although it was not used in the sense in which the word microprocessor is used today.

Contents

Viatron was founded in 1967 by engineers from Mitre Corporation led by Dr. Edward M. Bennett and Dr. Joseph Spiegel. In 1968 the company announced its System 21 [1] small computer system together with its intention to lease the systems starting at a revolutionary price of $40 per month. The basic system included a microprocessor with 512 characters of read/write RAM memory, a keyboard, a 9-inch (23 cm) CRT display and two cartridge tape drives. [2]

The system specifications, advanced for 1968 five years before the advent of the first commercial personal computers caused a lot of excitement in the computer industry. The System 21 was aimed, among others, at applications such as mathematical and statistical analysis, business data processing, data entry and media conversion, and educational/classroom use.

The expectation was that the use of new large scale integrated circuit technology (LSI) and volume would enable Viatron to be successful at lower margins, however the prototype did not incorporate LSI technology. In 1968 Bennett claimed that by 1972 Viatron would have delivered more "digital machines" than had "previously been installed by all computer makers." He declared "We want to turn out computers like GM turns out Chevvies," [3]

The semiconductor industry was unable to produce circuits in the volumes required, forcing Viatron to sell fewer than the planned 5,0006,000 systems per month. This raised the production costs per unit and prevented the company from ever achieving profitability.

Bennet and Spiegel were fired in 1970, and the company declared Chapter XI bankruptcy in 1971. [4]

System 21 components

As announced the System 21 line consisted of the following: [5]

CPU

The Viatron CPUs differed in memory size and interrupt levels 2 on the 2140 and 4 on the 2150. They had the ability to operate on 8-bit, 16-bit, 32-bit, or 48-bit data. Three index registers were provided.

The CPUs included two independent arithmetic units with different capabilities.

The system had two instruction formats: Standard, 16-bit instructions, and Extended, 32-bit instructions. Standard instructions had a 6-bit operation code, a two-bit index register identifier, and an 8-bit PC-relative address. Extended instructions had a 6-bit operation code, a two-bit index register identifier, an 8-bit operation code modifier, and a 16-bit memory address. Indirect addressing was allowed.

There were 85 instructions, some of which had both standard and extended forms:

Typeface

Viatron commissioned Harry N. Peble to design the Viafont-X, a patented typeface (1971) readable by both humans and machines, for use in conjunction with the company's optical character recognition devices.

U.S. Patent for the Viafont-X typeface. Viafont-X-US-Pat-D221306.png
U.S. Patent for the Viafont-X typeface.

Related Research Articles

<span class="mw-page-title-main">Central processing unit</span> Central computer component which executes instructions

A central processing unit (CPU)—also called a central processor or main processor—is the most important processor in a given computer. Its electronic circuitry executes instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs).

<span class="mw-page-title-main">Data General Nova</span> 16-bit minicomputer series

The Data General Nova is a series of 16-bit minicomputers released by the American company Data General. The Nova family was very popular in the 1970s and ultimately sold tens of thousands of units.

<span class="mw-page-title-main">Intel 8080</span> 8-bit microprocessor

The Intel 8080 ("eighty-eighty") is the second 8-bit microprocessor designed and manufactured by Intel. It first appeared in April 1974 and is an extended and enhanced variant of the earlier 8008 design, although without binary compatibility. The initial specified clock rate or frequency limit was 2 MHz, with common instructions using 4, 5, 7, 10, or 11 cycles. As a result, the processor is able to execute several hundred thousand instructions per second. Two faster variants, the 8080A-1 and 8080A-2, became available later with clock frequency limits of 3.125 MHz and 2.63 MHz respectively. The 8080 needs two support chips to function in most applications: the i8224 clock generator/driver and the i8228 bus controller. It is implemented in N-type metal–oxide–semiconductor logic (NMOS) using non-saturated enhancement mode transistors as loads thus demanding a +12 V and a −5 V voltage in addition to the main transistor–transistor logic (TTL) compatible +5 V.

<span class="mw-page-title-main">PDP-10</span> 36-bit computer by Digital (1966–1983)

Digital Equipment Corporation (DEC)'s PDP-10, later marketed as the DECsystem-10, is a mainframe computer family manufactured beginning in 1966 and discontinued in 1983. 1970s models and beyond were marketed under the DECsystem-10 name, especially as the TOPS-10 operating system became widely used.

<span class="mw-page-title-main">PDP-8</span> Minicomputer product line

The PDP-8 is a family of 12-bit minicomputers that was produced by Digital Equipment Corporation (DEC). It was the first commercially successful minicomputer, with over 50,000 units being sold over the model's lifetime. Its basic design follows the pioneering LINC but has a smaller instruction set, which is an expanded version of the PDP-5 instruction set. Similar machines from DEC are the PDP-12 which is a modernized version of the PDP-8 and LINC concepts, and the PDP-14 industrial controller system.

<span class="mw-page-title-main">LINC</span> Laboratory Instrument Computer (1962)

The LINC is a 12-bit, 2048-word transistorized computer. The LINC is considered by some to be the first minicomputer and a forerunner to the personal computer. Originally named the Linc, suggesting the project's origins at MIT's Lincoln Laboratory, it was renamed LINC after the project moved from the Lincoln Laboratory. The LINC was designed by Wesley A. Clark and Charles Molnar.

<span class="mw-page-title-main">Datapoint 2200</span> Personal computer and terminal

The Datapoint 2200 was a mass-produced programmable terminal usable as a computer, designed by Computer Terminal Corporation (CTC) founders Phil Ray and Gus Roche and announced by CTC in June 1970. It was initially presented by CTC as a versatile and cost-efficient terminal for connecting to a wide variety of mainframes by loading various terminal emulations from tape rather than being hardwired as most contemporary terminals, including their earlier Datapoint 3300. However, Dave Gust, a CTC salesman, realized that the 2200 could meet Pillsbury Foods's need for a small computer in the field, after which the 2200 was marketed as a stand-alone computer. Its industrial designer John "Jack" Frassanito has later claimed that Ray and Roche always intended the Datapoint 2200 to be a full-blown personal computer, but that they chose to keep quiet about this so as not to concern investors and others. Also significant is the fact that the terminal's multi-chip CPU (processor)'s instruction set became the basis of the Intel 8008 instruction set, which inspired the Intel 8080 instruction set and the x86 instruction set used in the processors for the original IBM PC and its descendants.

<span class="mw-page-title-main">Masatoshi Shima</span> Japanese electronics engineer

Masatoshi Shima is a Japanese electronics engineer. He was one of the architects of the world's first microprocessor, the Intel 4004. In 1968, Shima worked for Busicom in Japan, and did the logic design for a specialized CPU to be translated into three-chip custom chips. In 1969, he worked with Intel's Ted Hoff and Stanley Mazor to reduce the three-chip Busicom proposal into a one-chip architecture. In 1970, that architecture was transformed into a silicon chip, the Intel 4004, by Federico Faggin, with Shima's assistance in logic design.

<span class="mw-page-title-main">HP 2100</span> Mid-1960s 16-bit computer series by Hewlitt Packard

The HP 2100 is a series of 16-bit minicomputers that were produced by Hewlett-Packard (HP) from the mid-1960s to early 1990s. Tens of thousands of machines in the series were sold over its twenty-five year lifetime, making HP the fourth largest minicomputer vendor during the 1970s.

The APE(X)C, or All Purpose Electronic (X) Computer series was designed by Andrew Donald Booth at Birkbeck College, London in the early 1950s. His work on the APE(X)C series was sponsored by the British Rayon Research Association. Although the naming conventions are slightly unclear, it seems the first model belonged to the BRRA. According to Booth, the X stood for X-company.

<span class="mw-page-title-main">Nord-10</span>

Nord-10 was a medium-sized general-purpose 16-bit minicomputer designed for multilingual time-sharing applications and for real-time multi-program systems, produced by Norsk Data. It was introduced in 1973. The later follow up model, Nord-10/S, introduced in 1975, introduced CPU cache, paging, and other miscellaneous improvements.

<span class="mw-page-title-main">CDC 6000 series</span> Family of 1960s mainframe computers

The CDC 6000 series is a discontinued family of mainframe computers manufactured by Control Data Corporation in the 1960s. It consisted of the CDC 6200, CDC 6300, CDC 6400, CDC 6500, CDC 6600 and CDC 6700 computers, which were all extremely rapid and efficient for their time. Each is a large, solid-state, general-purpose, digital computer that performs scientific and business data processing as well as multiprogramming, multiprocessing, Remote Job Entry, time-sharing, and data management tasks under the control of the operating system called SCOPE. By 1970 there also was a time-sharing oriented operating system named KRONOS. They were part of the first generation of supercomputers. The 6600 was the flagship of Control Data's 6000 series.

<span class="mw-page-title-main">CDC 160 series</span> Minicomputer

The CDC 160 series was a series of minicomputers built by Control Data Corporation. The CDC 160 and CDC 160-A were 12-bit minicomputers built from 1960 to 1965; the CDC 160G was a 13-bit minicomputer, with an extended version of the CDC 160-A instruction set, and a compatibility mode in which it did not use the 13th bit. The 160 was designed by Seymour Cray - reportedly over a long three-day weekend. It fit into the desk where its operator sat.

The D-37C (D37C) is the computer component of the all-inertial NS-17 Missile Guidance Set (MGS) for accurately navigating to its target thousands of miles away. The NS-17 MGS was used in the Minuteman II (LGM-30F) ICBM. The MGS, originally designed and produced by the Autonetics Division of North American Aviation, could store multiple preprogrammed targets in its internal memory.

In computer architecture, 16-bit integers, memory addresses, or other data units are those that are 16 bits wide. Also, 16-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size. 16-bit microcomputers are microcomputers that use 16-bit microprocessors.

<span class="mw-page-title-main">Computer Automation</span> Computer manufacturer

Computer Automation, Inc. was a computer manufacturer founded by David H. Methvin in 1968, based originally in Newport Beach, California, United States. It opened a sales, support and repair arm in the UK in 1972, based at Hertford House, Maple Cross, Rickmansworth, Hertfordshire. Later relocated to Suite 2 Milfield House, Croxley Centre, Croxley Green, Watford, Hertfordshire.

<span class="mw-page-title-main">Texas Instruments TMS1000</span>

The TMS1000 is a family of microcontrollers introduced by Texas Instruments in 1974.

<span class="mw-page-title-main">Monrobot XI</span> Computer introduced in 1960

The Monroe Calculating Machine Mark XI was a general-purpose stored-program electronic digital computer introduced in 1960 by the Monroe Calculating Machine Division of Litton Industries. The system was marketed for "primarily for billing, and invoice writing", but could also be used for low-end scientific computing.

The 12-bit ND812, produced by Nuclear Data, Inc., was a commercial minicomputer developed for the scientific computing market. Nuclear Data introduced it in 1970 at a price under $10,000.

<span class="mw-page-title-main">DATAmatic 1000</span> Legacy of Honeywell / Raytheon Company Joint Venture

The DATAmatic 1000 is an obsolete computer system from Honeywell introduced in 1957. It uses vacuum tubes and crystal diodes for logic, and featured a unique magnetic tape format for storage.

References

  1. "Annual Pictorial Report: PERIPHERAL EQUIPMENT - VIATRON SYSTEM 21". Computers and Automation: 42. Dec 1968.
  2. Ceruzzi, Paul (2003). A History of Modern Computing (2nd ed.) . The MIT Press. ISBN   0-262-53203-4.
  3. White, Donald (Oct 10, 1968). "Computers via the assembly line". Boston Globe. Retrieved June 27, 2013.
  4. Bassett, Ross Knox (2002). To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology. The Johns Hopkins University Press. ISBN   0801868092.
  5. Viatron Computer Systems. "System 21 is Now!" (PDF). Retrieved July 1, 2013.
  6. Viatron System 21 documents, VCS-21-CR_010_Viatron_2140_2150_GeneralDescr.pdf, p. 3 (7).