Vincent Moncrief

Last updated
Vincent Moncrief
Vincent Moncrief, 1973 February (portioned).jpg
NationalityAmerican
Scientific career
Fields Mathematics, physics
Institutions Yale University
Doctoral advisor Charles William Misner
Doctoral students Edward Seidel

Vincent Edward Moncrief is an American mathematician and physicist at Yale University. He works in relativity and mathematical physics. Moncrief earned his doctorate in 1972 at the University of Maryland College Park under the supervision of Charles William Misner and worked subsequently at the University of California Berkeley and at the University of Utah. He grew up in Oklahoma City.

A key result (obtained jointly with Arthur Fischer of the University of California at Santa Cruz) was to relate the reduced Hamiltonian for Einstein's equations to a topological invariant known as the Yamabe invariant (or sigma constant) for the spatial manifold and to show that the reduced Hamiltonian is monotonically decreasing along all solutions of the field equations (in the direction of cosmological expansion) and therefore evidently seeking to attain its infimum which in turn is expressible in terms of the sigma constant. A discussion of this and related work (with Lars Andersson of the University of Miami and Yvonne Choquet-Bruhat of the Université Paris VI) may be found in Moncrief's and Choquet-Bruhat's lectures at the Cargese summer school on 50 years of the Cauchy Problem in General Relativity. [1]

Moncrief's own research is mainly concerned with the global existence and asymptotic properties of cosmological solutions of Einstein's equations and especially the question of how these properties depend upon the topology of spacetime. He is also interested in how a study of the "Einstein flow" on various manifolds might shed light on open questions in 3-manifold topology itself. Most of this research involves the treatment of sufficiently small but nevertheless fully non-linear perturbations of certain special backgrounds and includes an analysis of higher as well as lower-dimensional spacetimes in addition to physical (3 + 1)-dimensional spacetime.

Related Research Articles

<span class="mw-page-title-main">Differential geometry</span> Branch of mathematics dealing with functions and geometric structures on differentiable manifolds

Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries.

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

The shape of the universe, in physical cosmology, is the local and global geometry of the universe. The local features of the geometry of the universe are primarily described by its curvature, whereas the topology of the universe describes general global properties of its shape as a continuous object.

In the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a (pseudo-)Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are of fundamental interest, as they are the solutions of Einstein's field equations in vacuum with vanishing cosmological constant.

In differential geometry and mathematical physics, an Einstein manifold is a Riemannian or pseudo-Riemannian differentiable manifold whose Ricci tensor is proportional to the metric. They are named after Albert Einstein because this condition is equivalent to saying that the metric is a solution of the vacuum Einstein field equations, although both the dimension and the signature of the metric can be arbitrary, thus not being restricted to Lorentzian manifolds. Einstein manifolds in four Euclidean dimensions are studied as gravitational instantons.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

Spacetime symmetries are features of spacetime that can be described as exhibiting some form of symmetry. The role of symmetry in physics is important in simplifying solutions to many problems. Spacetime symmetries are used in the study of exact solutions of Einstein's field equations of general relativity. Spacetime symmetries are distinguished from internal symmetries.

<span class="mw-page-title-main">Carl H. Brans</span> American mathematical physicist

Carl Henry Brans is an American mathematical physicist best known for his research into the theoretical underpinnings of gravitation elucidated in his most widely publicized work, the Brans–Dicke theory.

In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals that its motion is confined to a submanifold of much smaller dimensionality than that of its phase space.

In differential geometry and general relativity, the Bach tensor is a trace-free tensor of rank 2 which is conformally invariant in dimension n = 4. Before 1968, it was the only known conformally invariant tensor that is algebraically independent of the Weyl tensor. In abstract indices the Bach tensor is given by

The mathematics of general relativity is complex. In Newton's theories of motion, an object's length and the rate at which time passes remain constant while the object accelerates, meaning that many problems in Newtonian mechanics may be solved by algebra alone. In relativity, however, an object's length and the rate at which time passes both change appreciably as the object's speed approaches the speed of light, meaning that more variables and more complicated mathematics are required to calculate the object's motion. As a result, relativity requires the use of concepts such as vectors, tensors, pseudotensors and curvilinear coordinates.

<span class="mw-page-title-main">Charles W. Misner</span> American physicist (1932–2023)

Charles W. Misner was an American physicist and one of the authors of Gravitation. His specialties included general relativity and cosmology. His work has also provided early foundations for studies of quantum gravity and numerical relativity.

<i>General Relativity</i> (book) 1984 graduate textbook by Robert M. Wald

General Relativity is a graduate textbook and reference on Albert Einstein's general theory of relativity written by the gravitational physicist Robert Wald.

<span class="mw-page-title-main">Causal sets</span> Approach to quantum gravity using discrete spacetime

The causal sets program is an approach to quantum gravity. Its founding principles are that spacetime is fundamentally discrete and that spacetime events are related by a partial order. This partial order has the physical meaning of the causality relations between spacetime events.

The initial value formulation of general relativity is a reformulation of Albert Einstein's theory of general relativity that describes a universe evolving over time.

<span class="mw-page-title-main">James A. Isenberg</span> American physicist

James A. Isenberg is an American theoretical physicist and mathematician, professor emeritus at the University of Oregon.

<span class="mw-page-title-main">Yvonne Choquet-Bruhat</span> French mathematician and physicist

Yvonne Choquet-Bruhat is a French mathematician and physicist. She has made seminal contributions to the study of Einstein's general theory of relativity, by showing that the Einstein equations can be put into the form of an initial value problem which is well-posed. In 2015, her breakthrough paper was listed by the journal Classical and Quantum Gravity as one of thirteen 'milestone' results in the study of general relativity, across the hundred years in which it had been studied.

In mathematics and mathematical physics, complex spacetime extends the traditional notion of spacetime described by real-valued space and time coordinates to complex-valued space and time coordinates. The notion is entirely mathematical with no physics implied, but should be seen as a tool, for instance, as exemplified by the Wick rotation.

In the mathematical field of differential geometry, a maximal surface is a certain kind of submanifold of a Lorentzian manifold. Precisely, given a Lorentzian manifold (M, g), a maximal surface is a spacelike submanifold of M whose mean curvature is zero. As such, maximal surfaces in Lorentzian geometry are directly analogous to minimal surfaces in Riemannian geometry. The difference in terminology between the two settings has to do with the fact that small regions in maximal surfaces are local maximizers of the area functional, while small regions in minimal surfaces are local minimizers of the area functional.

References

  1. "Cargèse Summer School". fanfreluche.math.univ-tours.fr. Retrieved 2016-08-05.