Viomycin

Last updated

Viomycin
Viomycin.svg
Clinical data
Routes of
administration
Intramuscular injection
Drug class Aminoglycoside
ATC code
  • None
Legal status
Legal status
Identifiers
  • (S)-3,6-Diamino-N-((3S,9S,12S,15S,Z)-((2R,4S)-6-amino-4-hydroxy-1,2,3,4-tetrahydropyridin-2-yl)-9,12-bis(hydroxymethyl)2,5,8,11,14-pentaoxo-6-(ureidomethylene)-1,4,7,10,13-pentaazacyclohexadecan-15-yl)hexanamide
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.046.643 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C25H43N13O10
Molar mass 685.700 g·mol−1
3D model (JSmol)
  • C1[C@@H](NC(=N[C@H]1O)N)[C@H]2C(=O)NC[C@@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N/C(=C\NC(=O)N)/C(=O)N2)CO)CO)NC(=O)C[C@H](CCCN)N
  • InChI=1S/C25H43N13O10/c26-3-1-2-10(27)4-16(41)32-12-6-30-23(47)18(11-5-17(42)37-24(28)36-11)38-20(44)13(7-31-25(29)48)33-21(45)14(8-39)35-22(46)15(9-40)34-19(12)43/h7,10-12,14-15,17-18,39-40,42H,1-6,8-9,26-27H2,(H,30,47)(H,32,41)(H,33,45)(H,34,43)(H,35,46)(H,38,44)(H3,28,36,37)(H3,29,31,48)/b13-7-/t10-,11+,12-,14-,15-,17-,18-/m0/s1 Yes check.svgY
  • Key:GXFAIFRPOKBQRV-GHXCTMGLSA-N Yes check.svgY
  • Key:AQONYROJHRNYQQ-QMAPKBLTSA-N
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Viomycin is a member of the tuberactinomycin family, [1] [2] [3] a group of nonribosomal peptide antibiotics exhibiting anti-tuberculosis activity. The tuberactinomycin family is an essential component in the drug cocktail currently used to fight infections of Mycobacterium tuberculosis. Viomycin was the first member of the tuberactinomycins to be isolated and identified, [4] and was used to treat TB until it was replaced by the less toxic, but structurally related compound, capreomycin. The tuberactinomycins target bacterial ribosomes, binding RNA and disrupting bacterial protein synthesis and certain forms of RNA splicing. Viomycin is produced by the actinomycete Streptomyces puniceus . [5]

Contents

Biosynthesis

The gene cluster for viomycin has been sequenced from Streptomyces sp. strain ATCC 11861, [6] Streptomyces vinaceus [7] and from Streptomyces lividans 1326. [4] It consists of a central cyclic pentapeptide code assembled from nonribosomal peptide synthetase (NRPS). The NRPS contains 4 proteins: VioA, VioF, VioI, and VioG. These proteins condense and cyclize two molecules of L-2,3-diaminopropionate (L-Dap), two molecules of L-serine (L-Ser), and one molecule of (2S,3R)-capreomycidine (L-Cam). After cyclizing these, VioJ catalyzes the α,β-desaturation of this preliminary structure. It is proposed that the viomycin gene cluster includes 36.3 kb of contiguous DNA that encodes 20 open reading frames (ORFs) [6] that are involved in the biosynthesis, regulation, and eventual activation viomycin. In addition to these ORFs, the structure contains the resistance gene vph. The following is a summary of the ORFs and their functions.

Synthesis of the backbone

The following is the proposed biosynthesis of viomycin using NRPS-catalyzed peptide synthesis. There are five modules for cyclic pentapeptide biosynthesis, including one that lacks an adenylation domain (A). It is therefore proposed that one of the other A domains functions twice. Additionally, the NRPS subunits are not suspected to function in the order in which their genes are arranged, a characteristic of viomycin biosynthesis that is unlike typical NRPS-catalyzed peptide synthesis. [4] The NRPS components function in the order of VioA→VioI→VioF→VioG to account for the incorporation of β-ureidoalanine (β-Uda). The first A domain of VioA creates an L-Dap-PCP intermediate on the first PCP domain. Meanwhile, the second A domain of VioA loads L-Ser onto the second PCP domain, as well as the PCP of VioI. The activation of β-Uda occurs via VioF, and VioG incorporates L-Cam. 

Figure 1. Domain Organization of viomycin. Viomycin biosynthesisIII.png
Figure 1. Domain Organization of viomycin.

Post-modification

After α,β-desaturation via VioJ, three modifications to the preliminary cyclic structure occur. Hydroxylation of C-6 in the structure occurs by VioQ, N-acylation of α-amino group using β-lysine, VioO, and VioM, and carbamoylation of the β-amino group, producing β-ureidoalanine (β-Uda) by the carbamoyltransferase homologue VioL.

Figure 2. Post-modification of Viomycin. Post modificationsII.png
Figure 2. Post-modification of Viomycin.

Related Research Articles

<span class="mw-page-title-main">Alamethicin</span> Chemical compound

Alamethicin is a channel-forming peptide antibiotic, produced by the fungus Trichoderma viride. It belongs to peptaibol peptides which contain the non-proteinogenic amino acid residue Aib. This residue strongly induces formation of alpha-helical structure. The peptide sequence is

<span class="mw-page-title-main">Teicoplanin</span> Pharmaceutical drug

Teicoplanin is an semisynthetic glycopeptide antibiotic with a spectrum of activity similar to vancomycin. Its mechanism of action is to inhibit bacterial cell wall peptidoglycan synthesis. It is used in the prophylaxis and treatment of serious infections caused by Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and Enterococcus faecalis.

In organic chemistry, polyketides are a class of natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups: [−C(=O)−CH2−]n. First studied in the early 20th century, discovery, biosynthesis, and application of polyketides has evolved. It is a large and diverse group of secondary metabolites caused by its complex biosynthesis which resembles that of fatty acid synthesis. Because of this diversity, polyketides can have various medicinal, agricultural, and industrial applications. Many polyketides are medicinal or exhibit acute toxicity. Biotechnology has enabled discovery of more naturally-occurring polyketides and evolution of new polyketides with novel or improved bioactivity.

<small>DD</small>-Transpeptidase Bacterial enzyme

DD-Transpeptidase is a bacterial enzyme that catalyzes the transfer of the R-L-αα-D-alanyl moiety of R-L-αα-D-alanyl-D-alanine carbonyl donors to the γ-OH of their active-site serine and from this to a final acceptor. It is involved in bacterial cell wall biosynthesis, namely, the transpeptidation that crosslinks the peptide side chains of peptidoglycan strands.

Nonribosomal peptides (NRP) are a class of peptide secondary metabolites, usually produced by microorganisms like bacteria and fungi. Nonribosomal peptides are also found in higher organisms, such as nudibranchs, but are thought to be made by bacteria inside these organisms. While there exist a wide range of peptides that are not synthesized by ribosomes, the term nonribosomal peptide typically refers to a very specific set of these as discussed in this article.

<span class="mw-page-title-main">Clavulanic acid</span> Molecule used to overcome antibiotic resistance in bacteria

Clavulanic acid is a β-lactam drug that functions as a mechanism-based β-lactamase inhibitor. While not effective by itself as an antibiotic, when combined with penicillin-group antibiotics, it can overcome antibiotic resistance in bacteria that secrete β-lactamase, which otherwise inactivates most penicillins.

<span class="mw-page-title-main">Daptomycin</span> Antibiotic

Daptomycin, sold under the brand name Cubicin among others, is a lipopeptide antibiotic used in the treatment of systemic and life-threatening infections caused by Gram-positive organisms.

<span class="mw-page-title-main">Cyclopiazonic acid</span> Chemical compound

Cyclopiazonic acid (α-CPA), a mycotoxin and a fungal neurotoxin, is made by the molds Aspergillus and Penicillium. It is an indole-tetramic acid that serves as a toxin due to its ability to inhibit calcium-dependent ATPases found in the endoplasmic and sarcoplasmic reticulum. This inhibition disrupts the muscle contraction-relaxation cycle and the calcium gradient that is maintained for proper cellular activity in cells.

<span class="mw-page-title-main">Tyrocidine</span> Chemical compound

Tyrocidine is a mixture of cyclic decapeptides produced by the bacteria Brevibacillus brevis found in soil. It can be composed of 4 different amino acid sequences, giving tyrocidine A–D. Tyrocidine is the major constituent of tyrothricin, which also contains gramicidin. Tyrocidine was the first commercially available antibiotic, but has been found to be toxic toward human blood and reproductive cells. The function of tyrocidine within its host B. brevis is thought to be regulation of sporulation.

Polyketide synthases (PKSs) are a family of multi-domain enzymes or enzyme complexes that produce polyketides, a large class of secondary metabolites, in bacteria, fungi, plants, and a few animal lineages. The biosyntheses of polyketides share striking similarities with fatty acid biosynthesis.

Blasticidin S is an antibiotic that is used in biology research for selecting cells in cell culture. Cells of interest can express the blasticidin resistance genes BSD or bsr, and can then survive treatment with the antibiotic. Blasticidin S is a nucleoside analogue antibiotic, resembling the nucleoside cytidine. Blasticidin works against human cells, fungi, and bacteria, all by disrupting protein translation. It was originally described by Japanese researchers in the 1950s seeking antibiotics for rice blast fungus.

Zwittermicin A is an antibiotic that has been identified from the bacterium Bacillus cereus UW85. It is a molecule of interest to agricultural industry because it has the potential to suppress plant disease due to its broad spectrum activity against certain gram positive and gram negative prokaryotic micro-organisms. The molecule is also of interest from a metabolic perspective because it represents a new structural class of antibiotic and suggests a crossover between polyketide and non-ribosomal peptide biosynthetic pathways. Zwittermicin A is linear aminopolyol.

Streptogramin B is a subgroup of the streptogramin antibiotics family. These natural products are cyclic hexa- or hepta depsipeptides produced by various members of the genus of bacteria Streptomyces. Many of the members of the streptogramins reported in the literature have the same structure and different names; for example, pristinamycin IA = vernamycin Bα = mikamycin B = osteogrycin B.

<span class="mw-page-title-main">Echinomycin</span> Chemical compound

Echinomycin is a peptide antibiotic. It is a dimer of two peptides creating a cyclic structure. It contains a bicyclic aromatic chromophore that is attached to the dimerized cyclic peptide core and a thioacetal bridge. It intercalates into DNA at two specific sites, thereby blocking the binding of hypoxia inducible factor 1 alpha (HIF1alpha).

<span class="mw-page-title-main">Bottromycin</span> Chemical compound

Bottromycin is a macrocyclic peptide with antibiotic activity. It was first discovered in 1957 as a natural product isolated from Streptomyces bottropensis. It has been shown to inhibit methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) among other Gram-positive bacteria and mycoplasma. Bottromycin is structurally distinct from both vancomycin, a glycopeptide antibiotic, and methicillin, a beta-lactam antibiotic.

<span class="mw-page-title-main">Cyclothiazomycin</span> Chemical compound

The cyclothiazomycins are a group of natural products, classified as thiopeptides, which are produced by various Streptomyces species of bacteria.

<span class="mw-page-title-main">Leinamycin</span> Chemical compound

Leinamycin is an 18-membered macrolactam produced by several species of Streptomyces atroolivaceus. This macrolactam has also been shown to exhibit antitumor properties as well as antimicrobial properties against gram-positive and gram-negative bacteria. The presence of a spiro-fused 1,3-dioxo-1,2-dithiolane moiety was a unique structural property at the time of this compound's discovery and it plays an important role in leinamycin's antitumor and antibacterial properties due to its ability to inhibit DNA synthesis.

<span class="mw-page-title-main">C-1027</span> Chemical compound

C-1027 or lidamycin is an antitumor antibiotic consisting of a complex of an enediyne chromophore and an apoprotein. It shows antibiotic activity against most Gram-positive bacteria. It is one of the most potent cytotoxic molecules known, due to its induction of a higher ratio of DNA double-strand breaks than single-strand breaks.

<span class="mw-page-title-main">Pyoluteorin</span> Chemical compound

Pyoluteorin is a natural antibiotic that is biosynthesized from a hybrid nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) pathway. Pyoluteorin was first isolated in the 1950s from Pseudomonas aeruginosa strains T359 and IFO 3455 and was found to be toxic against oomycetes, bacteria, fungi, and against certain plants. Pyoluteorin is most notable for its toxicity against the oomycete Pythium ultimum, which is a plant pathogen that causes a global loss in agriculture. Currently, pyoluteorin derivatives are being studied as an Mcl-1 antagonist in order to target cancers that have elevated Mcl-1 levels.

<span class="mw-page-title-main">Dihydromaltophilin</span> Chemical compound

Dihydromaltophilin, or heat stable anti-fungal factor (HSAF), is a secondary metabolite of Streptomyces sp. and Lysobacter enzymogenes. HSAF is a polycyclic tetramate lactam containing a single tetramic acid unit and a 5,5,6-tricyclic system. HSAF has been shown to have anti-fungal activity mediated through the disruption of the biosynthesis of Sphingolipid's by targeting a ceramide synthase unique to fungi.

References

  1. Bycroft BW (1972). "The crystal structure of viomycin, a tuberculostatic antibiotic". Chem. Commun. (11): 660. doi:10.1039/c39720000660.
  2. Noda T, Take T, Nagata A, Wakamiya T, Shiba T (July 1972). "Chemical studies on tuberactinomycin. 3. The chemical structure of viomycin (tuberactinomycin B)". The Journal of Antibiotics. 25 (7): 427–8. doi: 10.7164/antibiotics.25.427 . PMID   4350196.
  3. Kitagawa T, Miura T, Fujiwara K, Taniyama H (October 1972). "The total structure of viomycin by sequential analysis". Chemical & Pharmaceutical Bulletin. 20 (10): 2215–25. doi: 10.1248/cpb.20.2215 . PMID   4346588.
  4. 1 2 3 Barkei JJ, Kevany BM, Felnagle EA, Thomas MG (January 2009). "Investigations into viomycin biosynthesis by using heterologous production in Streptomyces lividans". ChemBioChem. 10 (2): 366–76. doi:10.1002/cbic.200800646. PMC   2765823 . PMID   19105177.
  5. Hutchings MI, Truman AW, Wilkinson B (October 2019). "Antibiotics: past, present and future". Current Opinion in Microbiology. 51: 72–80. doi: 10.1016/j.mib.2019.10.008 . PMID   31733401.
  6. 1 2 Thomas MG, Chan YA, Ozanick SG (September 2003). "Deciphering tuberactinomycin biosynthesis: isolation, sequencing, and annotation of the viomycin biosynthetic gene cluster". Antimicrobial Agents and Chemotherapy. 47 (9): 2823–30. doi:10.1128/AAC.47.9.2823-2830.2003. PMC   182626 . PMID   12936980.
  7. Yin X, O'Hare T, Gould SJ, Zabriskie TM (July 2003). "Identification and cloning of genes encoding viomycin biosynthesis from Streptomyces vinaceus and evidence for involvement of a rare oxygenase". Gene. 312: 215–24. doi:10.1016/S0378-1119(03)00617-6. PMID   12909358.