Viscosity solution

Last updated

In mathematics, the viscosity solution concept was introduced in the early 1980s by Pierre-Louis Lions and Michael G. Crandall as a generalization of the classical concept of what is meant by a 'solution' to a partial differential equation (PDE). It has been found that the viscosity solution is the natural solution concept to use in many applications of PDE's, including for example first order equations arising in dynamic programming (the Hamilton–Jacobi–Bellman equation), differential games (the Hamilton–Jacobi–Isaacs equation) or front evolution problems, [1] [2] as well as second-order equations such as the ones arising in stochastic optimal control or stochastic differential games.

Contents

The classical concept was that a PDE

over a domain has a solution if we can find a function u(x) continuous and differentiable over the entire domain such that , , , satisfy the above equation at every point.

If a scalar equation is degenerate elliptic (defined below), one can define a type of weak solution called viscosity solution. Under the viscosity solution concept, u does not need to be everywhere differentiable. There may be points where either or does not exist and yet u satisfies the equation in an appropriate generalized sense. The definition allows only for certain kind of singularities, so that existence, uniqueness, and stability under uniform limits, hold for a large class of equations.

Definition

There are several equivalent ways to phrase the definition of viscosity solutions. See for example the section II.4 of Fleming and Soner's book [3] or the definition using semi-jets in the Users Guide. [4]

Degenerate elliptic
An equation in a domain is defined to be degenerate elliptic if for any two symmetric matrices and such that is positive definite, and any values of , and , we have the inequality . For example, (where denotes the Laplacian) is degenerate elliptic since in this case, , and the trace of is the sum of its eigenvalues. Any real first- order equation is degenerate elliptic.
Viscosity subsolution
An upper semicontinuous function in is defined to be a subsolution of the above degenerate elliptic equation in the viscosity sense if for any point and any function such that and in a neighborhood of , we have .
Viscosity supersolution
A lower semicontinuous function in is defined to be a supersolution of the above degenerate elliptic equation in the viscosity sense if for any point and any function such that and in a neighborhood of , we have .
Viscosity solution
A continuous function u is a viscosity solution of the PDE in if it is both a supersolution and a subsolution. Note that the boundary condition in the viscosity sense has not been discussed here.

Example

Consider the boundary value problem , or , on with boundary conditions . Then, the function is a viscosity solution.

Indeed, note that the boundary conditions are satisfied classically, and is well-defined in the interior except at . Thus, it remains to show that the conditions for viscosity subsolution and viscosity supersolution hold at . Suppose that is any function differentiable at with and near . From these assumptions, it follows that . For positive , this inequality implies , using that for . On the other hand, for , we have that . Because is differentiable, the left and right limits agree and are equal to , and we therefore conclude that , i.e., . Thus, is a viscosity subsolution. Moreover, the fact that is a supersolution holds vacuously, since there is no function differentiable at with and near . This implies that is a viscosity solution.

In fact, one may prove that is the unique viscosity solution for such problem. The uniqueness part involves a more refined argument.

Discussion

Family of solutions
u
[?]
{\displaystyle u_{\epsilon }}
converging toward
u
(
x
)
=
1
-
|
x
|
{\displaystyle u(x)=1-|x|}
. Vanishing viscosity solutions.svg
Family of solutions converging toward .

The previous boundary value problem is an eikonal equation in a single spatial dimension with , where the solution is known to be the signed distance function to the boundary of the domain. Note also in the previous example, the importance of the sign of . In particular, the viscosity solution to the PDE with the same boundary conditions is . This can be explained by observing that the solution is the limiting solution of the vanishing viscosity problem as goes to zero, while is the limit solution of the vanishing viscosity problem . [5] One can readily confirm that solves the PDE for each . Further, the family of solutions converges toward the solution as vanishes (see Figure).

Basic properties

The three basic properties of viscosity solutions are existence, uniqueness and stability.

  1. with H uniformly continuous in both variables.
  2. (Uniformly elliptic case) so that is Lipschitz with respect to all variables and for every and , for some .

History

The term viscosity solutions first appear in the work of Michael G. Crandall and Pierre-Louis Lions in 1983 regarding the Hamilton–Jacobi equation. [6] The name is justified by the fact that the existence of solutions was obtained by the vanishing viscosity method. The definition of solution had actually been given earlier by Lawrence C. Evans in 1980. [9] Subsequently the definition and properties of viscosity solutions for the Hamilton–Jacobi equation were refined in a joint work by Crandall, Evans and Lions in 1984. [10]

For a few years the work on viscosity solutions concentrated on first order equations because it was not known whether second order elliptic equations would have a unique viscosity solution except in very particular cases. The breakthrough result came with the method introduced by Robert Jensen in 1988 to prove the comparison principle using a regularized approximation of the solution which has a second derivative almost everywhere (in modern versions of the proof this is achieved with sup-convolutions and Alexandrov theorem). [11]

In subsequent years the concept of viscosity solution has become increasingly prevalent in analysis of degenerate elliptic PDE. Based on their stability properties, Barles and Souganidis obtained a very simple and general proof of convergence of finite difference schemes. [12] Further regularity properties of viscosity solutions were obtained, especially in the uniformly elliptic case with the work of Luis Caffarelli. [13] Viscosity solutions have become a central concept in the study of elliptic PDE. In particular, Viscosity solutions are essential in the study of the infinity Laplacian. [14]

In the modern approach, the existence of solutions is obtained most often through the Perron method. [4] The vanishing viscosity method is not practical for second order equations in general since the addition of artificial viscosity does not guarantee the existence of a classical solution. Moreover, the definition of viscosity solutions does not generally involve physical viscosity. Nevertheless, while the theory of viscosity solutions is sometimes considered unrelated to viscous fluids, irrotational fluids can indeed be described by a Hamilton-Jacobi equation. [15] In this case, viscosity corresponds to the bulk viscosity of an irrotational, incompressible fluid. Other names that were suggested were Crandall–Lions solutions, in honor to their pioneers, -weak solutions, referring to their stability properties, or comparison solutions, referring to their most characteristic property.

Related Research Articles

<span class="mw-page-title-main">Calculus of variations</span> Differential calculus on function spaces

The calculus of variations is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations.

In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.

In mathematics, the method of characteristics is a technique for solving partial differential equations. Typically, it applies to first-order equations, although more generally the method of characteristics is valid for any hyperbolic partial differential equation. The method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data given on a suitable hypersurface.

<span class="mw-page-title-main">Hamilton–Jacobi equation</span> A reformulation of Newtons laws of motion using the calculus of variations

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In mathematics, Harnack's inequality is an inequality relating the values of a positive harmonic function at two points, introduced by A. Harnack (1887). Harnack's inequality is used to prove Harnack's theorem about the convergence of sequences of harmonic functions. J. Serrin (1955), and J. Moser generalized Harnack's inequality to solutions of elliptic or parabolic partial differential equations. Such results can be used to show the interior regularity of weak solutions.

<span class="mw-page-title-main">Heat kernel</span> Fundamental solution to the heat equation, given boundary values

In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator, and is thus of some auxiliary importance throughout mathematical physics. The heat kernel represents the evolution of temperature in a region whose boundary is held fixed at a particular temperature, such that an initial unit of heat energy is placed at a point at time t = 0.

In mathematics, more specifically in dynamical systems, the method of averaging exploits systems containing time-scales separation: a fast oscillationversus a slow drift. It suggests that we perform an averaging over a given amount of time in order to iron out the fast oscillations and observe the qualitative behavior from the resulting dynamics. The approximated solution holds under finite time inversely proportional to the parameter denoting the slow time scale. It turns out to be a customary problem where there exists the trade off between how good is the approximated solution balanced by how much time it holds to be close to the original solution.

<span class="mw-page-title-main">Genus of a multiplicative sequence</span> A ring homomorphism from the cobordism ring of manifolds to another ring

In mathematics, a genus of a multiplicative sequence is a ring homomorphism from the ring of smooth compact manifolds up to the equivalence of bounding a smooth manifold with boundary to another ring, usually the rational numbers, having the property that they are constructed from a sequence of polynomials in characteristic classes that arise as coefficients in formal power series with good multiplicative properties.

<span class="mw-page-title-main">Navier–Stokes existence and smoothness</span> Millennium Prize Problem

The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications. However, theoretical understanding of the solutions to these equations is incomplete. In particular, solutions of the Navier–Stokes equations often include turbulence, which remains one of the greatest unsolved problems in physics, despite its immense importance in science and engineering.

<span class="mw-page-title-main">Elliptic boundary value problem</span>

In mathematics, an elliptic boundary value problem is a special kind of boundary value problem which can be thought of as the stable state of an evolution problem. For example, the Dirichlet problem for the Laplacian gives the eventual distribution of heat in a room several hours after the heating is turned on.

Acoustic streaming is a steady flow in a fluid driven by the absorption of high amplitude acoustic oscillations. This phenomenon can be observed near sound emitters, or in the standing waves within a Kundt's tube. Acoustic streaming was explained first by Lord Rayleigh in 1884. It is the less-known opposite of sound generation by a flow.

In mathematics, the p-Laplacian, or the p-Laplace operator, is a quasilinear elliptic partial differential operator of 2nd order. It is a nonlinear generalization of the Laplace operator, where is allowed to range over . It is written as

In mathematics, and more precisely, in functional Analysis and PDEs, the Schauder estimates are a collection of results due to Juliusz Schauder concerning the regularity of solutions to linear, uniformly elliptic partial differential equations. The estimates say that when the equation has appropriately smooth terms and appropriately smooth solutions, then the Hölder norm of the solution can be controlled in terms of the Hölder norms for the coefficient and source terms. Since these estimates assume by hypothesis the existence of a solution, they are called a priori estimates.

In mathematical physics and the theory of partial differential equations, the solitary wave solution of the form is said to be orbitally stable if any solution with the initial data sufficiently close to forever remains in a given small neighborhood of the trajectory of

In mathematics, the Fictitious domain method is a method to find the solution of a partial differential equations on a complicated domain , by substituting a given problem posed on a domain , with a new problem posed on a simple domain containing .

In mathematics, the Hopf lemma, named after Eberhard Hopf, states that if a continuous real-valued function in a domain in Euclidean space with sufficiently smooth boundary is harmonic in the interior and the value of the function at a point on the boundary is greater than the values at nearby points inside the domain, then the derivative of the function in the direction of the outward pointing normal is strictly positive. The lemma is an important tool in the proof of the maximum principle and in the theory of partial differential equations. The Hopf lemma has been generalized to describe the behavior of the solution to an elliptic problem as it approaches a point on the boundary where its maximum is attained.

In mathematics, a free boundary problem is a partial differential equation to be solved for both an unknown function and an unknown domain . The segment of the boundary of which is not known at the outset of the problem is the free boundary.

In mathematics, the Neumann–Poincaré operator or Poincaré–Neumann operator, named after Carl Neumann and Henri Poincaré, is a non-self-adjoint compact operator introduced by Poincaré to solve boundary value problems for the Laplacian on bounded domains in Euclidean space. Within the language of potential theory it reduces the partial differential equation to an integral equation on the boundary to which the theory of Fredholm operators can be applied. The theory is particularly simple in two dimensions—the case treated in detail in this article—where it is related to complex function theory, the conjugate Beurling transform or complex Hilbert transform and the Fredholm eigenvalues of bounded planar domains.

In mathematics and theoretical physics, and especially gauge theory, the deformed Hermitian Yang–Mills (dHYM) equation is a differential equation describing the equations of motion for a D-brane in the B-model of string theory. The equation was derived by Mariño-Minasian-Moore-Strominger in the case of Abelian gauge group, and by Leung–Yau–Zaslow using mirror symmetry from the corresponding equations of motion for D-branes in the A-model of string theory.

ZFK equation, abbreviation for Zeldovich–Frank-Kamenetskii equation, is a reaction–diffusion equation that models premixed flame propagation. The equation is named after Yakov Zeldovich and David A. Frank-Kamenetskii who derived the equation in 1938 and is also known as the Nagumo equation. The equation is analogous to KPP equation except that is contains an exponential behaviour for the reaction term and it differs fundamentally from KPP equation with regards to the propagation velocity of the traveling wave. In non-dimensional form, the equation reads

References

  1. Dolcetta, I.; Lions, P., eds. (1995). Viscosity Solutions and Applications. Berlin: Springer. ISBN   3-540-62910-6.
  2. 1 2 3 Tran, Hung V. (2021). Hamilton-Jacobi Equations : Theory and Applications. Providence, Rhode Island. ISBN   978-1-4704-6511-7. OCLC   1240263322.{{cite book}}: CS1 maint: location missing publisher (link)
  3. Wendell H. Fleming, H. M . Soner, (2006), Controlled Markov Processes and Viscosity Solutions. Springer, ISBN   978-0-387-26045-7.
  4. 1 2 3 4 5 Crandall, Michael G.; Ishii, Hitoshi; Lions, Pierre-Louis (1992), "User's guide to viscosity solutions of second order partial differential equations", Bulletin of the American Mathematical Society, New Series, 27 (1): 1–67, arXiv: math/9207212 , Bibcode:1992math......7212C, doi:10.1090/S0273-0979-1992-00266-5, ISSN   0002-9904, S2CID   119623818
  5. Barles, Guy (2013). "An Introduction to the Theory of Viscosity Solutions for First-Order Hamilton–Jacobi Equations and Applications". Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications. Lecture Notes in Mathematics. Vol. 2074. Berlin: Springer. pp. 49–109. doi:10.1007/978-3-642-36433-4_2. ISBN   978-3-642-36432-7. S2CID   55804130.
  6. 1 2 Crandall, Michael G.; Lions, Pierre-Louis (1983), "Viscosity solutions of Hamilton-Jacobi equations", Transactions of the American Mathematical Society , 277 (1): 1–42, doi: 10.2307/1999343 , ISSN   0002-9947, JSTOR   1999343
  7. Ishii, Hitoshi (1987), "Perron's method for Hamilton-Jacobi equations", Duke Mathematical Journal , 55 (2): 369–384, doi:10.1215/S0012-7094-87-05521-9, ISSN   0012-7094
  8. Ishii, Hitoshi (1989), "On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs", Communications on Pure and Applied Mathematics , 42 (1): 15–45, doi:10.1002/cpa.3160420103, ISSN   0010-3640
  9. Evans, Lawrence C. (1980), "On solving certain nonlinear partial differential equations by accretive operator methods", Israel Journal of Mathematics , 36 (3): 225–247, doi:10.1007/BF02762047, ISSN   0021-2172, S2CID   122155665
  10. Crandall, Michael G.; Evans, Lawrence C.; Lions, Pierre-Louis (1984), "Some properties of viscosity solutions of Hamilton–Jacobi equations", Transactions of the American Mathematical Society , 282 (2): 487–502, doi: 10.2307/1999247 , ISSN   0002-9947, JSTOR   1999247
  11. Jensen, Robert (1988), "The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations", Archive for Rational Mechanics and Analysis, 101 (1): 1–27, Bibcode:1988ArRMA.101....1J, doi:10.1007/BF00281780, ISSN   0003-9527, S2CID   5776251
  12. Barles, G.; Souganidis, P. E. (1991), "Convergence of approximation schemes for fully nonlinear second order equations", Asymptotic Analysis, 4 (3): 271–283, doi:10.3233/ASY-1991-4305, ISSN   0921-7134
  13. Caffarelli, Luis A.; Cabré, Xavier (1995), Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, vol. 43, Providence, R.I.: American Mathematical Society, ISBN   978-0-8218-0437-7
  14. Crandall, Michael G.; Evans, Lawrence C.; Gariepy, Ronald F. (2001), "Optimal Lipschitz extensions and the infinity Laplacian", Calculus of Variations and Partial Differential Equations, 13 (2): 123–129, doi:10.1007/s005260000065, S2CID   1529607
  15. Westernacher-Schneider, John Ryan; Markakis, Charalampos; Tsao, Bing Jyun (2020). "Hamilton-Jacobi hydrodynamics of pulsating relativistic stars". Classical and Quantum Gravity. 37 (15): 155005. arXiv: 1912.03701 . Bibcode:2020CQGra..37o5005W. doi:10.1088/1361-6382/ab93e9. S2CID   208909879.