Viviani's theorem

Last updated
For any interior point P, the sum of the lengths s + u + t equals the height of the equilateral triangle. Viviani Theorem.svg
For any interior point P, the sum of the lengths s + u + t equals the height of the equilateral triangle.

Viviani's theorem, named after Vincenzo Viviani, states that the sum of the distances from any interior point to the sides of an equilateral triangle equals the length of the triangle's altitude. [1] It is a theorem commonly employed in various math competitions, secondary school mathematics examinations, and has wide applicability to many problems in the real world.

Contents

Proof

Visual proof of Viviani's theorem
1.
Nearest distances from point P to sides of equilateral triangle ABC are shown.
2.
Lines DE, FG, and HI parallel to AB, BC and CA, respectively, and passing through P define similar triangles PHE, PFI and PDG.
3.
As these triangles are equilateral, their altitudes can be rotated to be vertical.
4.
As PGCH is a parallelogram, triangle PHE can be slid up to show that the altitudes sum to that of triangle ABC. Viviani theorem visual proof.svg
Visual proof of Viviani's theorem
1.Nearest distances from point P to sides of equilateral triangle ABC are shown.
2.Lines DE, FG, and HI parallel to AB, BC and CA, respectively, and passing through P define similar triangles PHE, PFI and PDG.
3.As these triangles are equilateral, their altitudes can be rotated to be vertical.
4.As PGCH is a parallelogram, triangle PHE can be slid up to show that the altitudes sum to that of triangle ABC.

This proof depends on the readily-proved proposition that the area of a triangle is half its base times its height—that is, half the product of one side with the altitude from that side. [2]

Let ABC be an equilateral triangle whose height is h and whose side is a.

Let P be any point inside the triangle, and u, s, t the distances of P from the sides. Draw a line from P to each of A, B, and C, forming three triangles PAB, PBC, and PCA.

Now, the areas of these triangles are , , and . They exactly fill the enclosing triangle, so the sum of these areas is equal to the area of the enclosing triangle. So we can write:

and thus

Q.E.D.

Converse

The converse also holds: If the sum of the distances from an interior point of a triangle to the sides is independent of the location of the point, the triangle is equilateral. [3]

Applications

Flammability diagram for methane Flammability diagram methane.svg
Flammability diagram for methane

Viviani's theorem means that lines parallel to the sides of an equilateral triangle give coordinates for making ternary plots, such as flammability diagrams.

More generally, they allow one to give coordinates on a regular simplex in the same way.

Extensions

Parallelogram

The sum of the distances from any interior point of a parallelogram to the sides is independent of the location of the point. The converse also holds: If the sum of the distances from a point in the interior of a quadrilateral to the sides is independent of the location of the point, then the quadrilateral is a parallelogram. [3]

The result generalizes to any 2n-gon with opposite sides parallel. Since the sum of distances between any pair of opposite parallel sides is constant, it follows that the sum of all pairwise sums between the pairs of parallel sides, is also constant. The converse in general is not true, as the result holds for an equilateral hexagon, which does not necessarily have opposite sides parallel.

Regular polygon

If a polygon is regular (both equiangular and equilateral), the sum of the distances to the sides from an interior point is independent of the location of the point. Specifically, it equals n times the apothem, where n is the number of sides and the apothem is the distance from the center to a side. [3] [4] However, the converse does not hold; the non-square parallelogram is a counterexample. [3]

Equiangular polygon

The sum of the distances from an interior point to the sides of an equiangular polygon does not depend on the location of the point. [1]

Convex polygon

A necessary and sufficient condition for a convex polygon to have a constant sum of distances from any interior point to the sides is that there exist three non-collinear interior points with equal sums of distances. [1]

Regular polyhedron

The sum of the distances from any point in the interior of a regular polyhedron to the sides is independent of the location of the point. However, the converse does not hold, not even for tetrahedra. [3]

Related Research Articles

In geometry, a polygon is a plane figure made up of line segments connected to form a closed polygonal chain.

<span class="mw-page-title-main">Quadrilateral</span> Polygon with four sides and four corners

In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons. Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .

<span class="mw-page-title-main">Triangle</span> Shape with three sides

A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, and C is denoted .

<span class="mw-page-title-main">Hexagon</span> Shape with six sides

In geometry, a hexagon is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.

<span class="mw-page-title-main">Rectangle</span> Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is occasionally used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

<span class="mw-page-title-main">Parallelogram</span> Quadrilateral with two pairs of parallel sides

In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.

<span class="mw-page-title-main">Ceva's theorem</span> Geometric relation between line segments from a triangles vertices and their intersection

In Euclidean geometry, Ceva's theorem is a theorem about triangles. Given a triangle ABC, let the lines AO, BO, CO be drawn from the vertices to a common point O, to meet opposite sides at D, E, F respectively. Then, using signed lengths of segments,

<span class="mw-page-title-main">Altitude (triangle)</span> Perpendicular line segment from a triangles side to opposite vertex

In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the the side opposite the vertex. This line containing the opposite side is called the extended base of the altitude. The intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude", is the distance between the extended base and the vertex. The process of drawing the altitude from the vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection.

<span class="mw-page-title-main">Equilateral triangle</span> Shape with three equal sides

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

<span class="mw-page-title-main">Rhombus</span> Quadrilateral in which all sides have the same length

In plane Euclidean geometry, a rhombus is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The rhombus is often called a "diamond", after the diamonds suit in playing cards which resembles the projection of an octahedral diamond, or a lozenge, though the former sometimes refers specifically to a rhombus with a 60° angle, and the latter sometimes refers specifically to a rhombus with a 45° angle.

In geometry, an equilateral polygon is a polygon which has all sides of the same length. Except in the triangle case, an equilateral polygon does not need to also be equiangular, but if it does then it is a regular polygon. If the number of sides is at least five, an equilateral polygon does not need to be a convex polygon: it could be concave or even self-intersecting.

<span class="mw-page-title-main">Thales's theorem</span> Angle formed by a point on a circle and the 2 ends of a diameter is a right angle

In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras.

In Euclidean geometry, a regular polygon is a polygon that is direct equiangular and equilateral. Regular polygons may be either convex, star or skew. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon, if the edge length is fixed.

<span class="mw-page-title-main">Concyclic points</span> Points on a common circle

In geometry, a set of points are said to be concyclic if they lie on a common circle. A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle.

<span class="mw-page-title-main">Fermat point</span> Triangle center minimizing sum of distances to each vertex

In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible or, equivalently, the geometric median of the three vertices. It is so named because this problem was first raised by Fermat in a private letter to Evangelista Torricelli, who solved it.

In Euclidean geometry, the Erdős–Mordell inequality states that for any triangle ABC and point P inside ABC, the sum of the distances from P to the sides is less than or equal to half of the sum of the distances from P to the vertices. It is named after Paul Erdős and Louis Mordell. Erdős (1935) posed the problem of proving the inequality; a proof was provided two years later by Mordell and D. F. Barrow (1937). This solution was however not very elementary. Subsequent simpler proofs were then found by Kazarinoff (1957), Bankoff (1958), and Alsina & Nelsen (2007).

<span class="mw-page-title-main">Steiner inellipse</span> Unique ellipse tangent to all 3 midpoints of a given triangles sides

In geometry, the Steiner inellipse, midpoint inellipse, or midpoint ellipse of a triangle is the unique ellipse inscribed in the triangle and tangent to the sides at their midpoints. It is an example of an inellipse. By comparison the inscribed circle and Mandart inellipse of a triangle are other inconics that are tangent to the sides, but not at the midpoints unless the triangle is equilateral. The Steiner inellipse is attributed by Dörrie to Jakob Steiner, and a proof of its uniqueness is given by Dan Kalman.

<span class="mw-page-title-main">Pentagon</span> Shape with five sides

In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

In geometry, Napoleon points are a pair of special points associated with a plane triangle. It is generally believed that the existence of these points was discovered by Napoleon Bonaparte, the Emperor of the French from 1804 to 1815, but many have questioned this belief. The Napoleon points are triangle centers and they are listed as the points X(17) and X(18) in Clark Kimberling's Encyclopedia of Triangle Centers.

References

  1. 1 2 3 Abboud, Elias (2010). "On Viviani's Theorem and its Extensions". College Mathematics Journal. 43 (3): 203–211. arXiv: 0903.0753 . doi:10.4169/074683410X488683. S2CID   118912287.
  2. Claudi Alsina, Roger B. Nelsen: Charming Proofs: A Journey Into Elegant Mathematics. MAA 2010, ISBN   9780883853481, p. 96 ( excerpt (Google) , p. 96, at Google Books)
  3. 1 2 3 4 5 Chen, Zhibo; Liang, Tian (2006). "The converse of Viviani's theorem". The College Mathematics Journal. 37 (5): 390–391. doi:10.2307/27646392. JSTOR   27646392.
  4. Pickover, Clifford A. (2009). The Math Book. Stirling. p. 150. ISBN   978-1402788291.

Further reading