Vladimir Kapitonov

Last updated

Vladimir Kapitonov is a Russian-American biologist and geneticist.[ clarification needed ]

Research

In 2005 he and Jerzy Jurka described a new genetic element called a Polinton which is self-synthesizing in such plants and insects as entamoeba, fruit flies, and fungi. They also discovered it in various species of chicken, fish, frogs, lizards, and such underwater species as sea squirts, sea urchins and anemones. [1]

In October 2007 he and Jurka paired up again, this time to describe transposable element in Arabidopsis thaliana , Oryza sativa and Caenorhabditis elegans plant species which became known as Helitron which he suggests plays a major role in genomic evolution. [2]

In 2011 he studied a microRNA gene which was previously discovered in mice and made even further discovery that by using various bioinformatic tools its intron contains SFMBT2 gene. [3]

Related Research Articles

An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word intron is derived from the term intragenic region, i.e., a region inside a gene. The term intron refers to both the DNA sequence within a gene and the corresponding RNA sequence in RNA transcripts. The non-intron sequences that become joined by this RNA processing to form the mature RNA are called exons.

<span class="mw-page-title-main">Retroposon</span>

Retroposons are repetitive DNA fragments which are inserted into chromosomes after they had been reverse transcribed from any RNA molecule.

<span class="mw-page-title-main">Transposable element</span> Semiparasitic DNA sequence

A transposable element is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Transposition often results in duplication of the same genetic material. In the human genome, L1 and Alu elements are two examples. Barbara McClintock's discovery of them earned her a Nobel Prize in 1983. Its importance in personalized medicine is becoming increasingly relevant, as well as gaining more attention in data analytics given the difficulty of analysis in very high dimensional spaces.

Non-coding DNA (ncDNA) sequences are components of an organism's DNA that do not encode protein sequences. Some non-coding DNA is transcribed into functional non-coding RNA molecules. Other functional regions of the non-coding DNA fraction include regulatory sequences that control gene expression; scaffold attachment regions; origins of DNA replication; centromeres; and telomeres. Some non-coding regions appear to be mostly nonfunctional, such as introns, pseudogenes, intergenic DNA, and fragments of transposons and viruses. Regions that are completely nonfunctional are called junk DNA.

An Alu element is a short stretch of DNA originally characterized by the action of the Arthrobacter luteus (Alu) restriction endonuclease. Alu elements are the most abundant transposable elements in the human genome, present in excess of one million copies. Alu elements were thought to be selfish or parasitic DNA, because their sole known function is self reproduction. However, they are likely to play a role in evolution and have been used as genetic markers. They are derived from the small cytoplasmic 7SL RNA, a component of the signal recognition particle. Alu elements are highly conserved within primate genomes and originated in the genome of an ancestor of Supraprimates.

Exon shuffling is a molecular mechanism for the formation of new genes. It is a process through which two or more exons from different genes can be brought together ectopically, or the same exon can be duplicated, to create a new exon-intron structure. There are different mechanisms through which exon shuffling occurs: transposon mediated exon shuffling, crossover during sexual recombination of parental genomes and illegitimate recombination.

<span class="mw-page-title-main">Mobile genetic elements</span> DNA sequence whose position in the genome is variable

Mobile genetic elements (MGEs), sometimes called selfish genetic elements, are a type of genetic material that can move around within a genome, or that can be transferred from one species or replicon to another. MGEs are found in all organisms. In humans, approximately 50% of the genome is thought to be MGEs. MGEs play a distinct role in evolution. Gene duplication events can also happen through the mechanism of MGEs. MGEs can also cause mutations in protein coding regions, which alters the protein functions. These mechanisms can also rearrange genes in the host genome generating variation. These mechanism can increase fitness by gaining new or additional functions. An example of MGEs in evolutionary context are that virulence factors and antibiotic resistance genes of MGEs can be transported to share genetic code with neighboring bacteria. However, MGEs can also decrease fitness by introducing disease-causing alleles or mutations. The set of MGEs in an organism is called a mobilome, which is composed of a large number of plasmids, transposons and viruses.

The recombination-activating genes (RAGs) encode parts of a protein complex that plays important roles in the rearrangement and recombination of the genes encoding immunoglobulin and T cell receptor molecules. There are two recombination-activating genes RAG1 and RAG2, whose cellular expression is restricted to lymphocytes during their developmental stages. The enzymes encoded by these genes, RAG-1 and RAG-2, are essential to the generation of mature B cells and T cells, two types of lymphocyte that are crucial components of the adaptive immune system.

Piwi-interacting RNA (piRNA) is the largest class of small non-coding RNA molecules expressed in animal cells. piRNAs form RNA-protein complexes through interactions with piwi-subfamily Argonaute proteins. These piRNA complexes are mostly involved in the epigenetic and post-transcriptional silencing of transposable elements and other spurious or repeat-derived transcripts, but can also be involved in the regulation of other genetic elements in germ line cells.

<span class="mw-page-title-main">Jerzy Jurka</span> Polish-American biologist (1950 –2014)

Jerzy Władysław Jurka was a Polish-American computational and molecular biologist. He served as the assistant director of research at the Linus Pauling Institute prior to founding the Genetic Information Research Institute. He collaborated with several notable scientists including Linus Pauling, George Irving Bell, Roy Britten, Temple Smith, and Emile Zuckerkandl. His Erdős number is 3, using the path through Temple Smith and Stanislaw Ulam.

RNA polymerase IV is an enzyme that synthesizes small interfering RNA (siRNA) in plants, which silence gene expression. RNAP IV belongs to a family of enzymes that catalyze the process of transcription known as RNA Polymerases, which synthesize RNA from DNA templates. Discovered via phylogenetic studies of land plants, genes of RNAP IV are thought to have resulted from multistep evolution processes that occurred in RNA Polymerase II phylogenies. Such an evolutionary pathway is supported by the fact that RNAP IV is composed of 12 protein subunits that are either similar or identical to RNA polymerase II, and is specific to plant genomes. Via its synthesis of siRNA, RNAP IV is involved in regulation of heterochromatin formation in a process known as RNA directed DNA Methylation (RdDM).

Helitrons are one of the three groups of eukaryotic class 2 transposable elements (TEs) so far described. They are the eukaryotic rolling-circle transposable elements which are hypothesized to transpose by a rolling circle replication mechanism via a single-stranded DNA intermediate. They were first discovered in plants and in the nematode Caenorhabditis elegans, and now they have been identified in a diverse range of species, from protists to mammals. Helitrons make up a substantial fraction of many genomes where non-autonomous elements frequently outnumber the putative autonomous partner. Helitrons seem to have a major role in the evolution of host genomes. They frequently capture diverse host genes, some of which can evolve into novel host genes or become essential for Helitron transposition.

A conserved non-coding sequence (CNS) is a DNA sequence of noncoding DNA that is evolutionarily conserved. These sequences are of interest for their potential to regulate gene production.

<i>Drosophila hydei</i> Species of fly

Drosophila hydei (mosca casera) is a species of Diptera, or the order of flies, in the family Drosophilidae. It is a species in the hydei species subgroup, a group in the repleta species group. Bizarrely, it is also known for having approximately 23 mm long sperm, 10 times the length of the male's body. Drosophila hydei are commonly found on compost piles worldwide, and can be rudimentarily identified by eye owing to their large size and variegated pigment pattern on the thorax. The name derives from Dr R. R. Hyde, who first discovered that the species was distinct from Drosophila repleta. D. hydei are one of the more popular flies used as feeders in the pet trade. A few varieties are available, some flightless. They are very similar to Drosophila melanogaster, despite having separated 50 million years ago.

<span class="mw-page-title-main">Long interspersed nuclear element</span>

Long interspersed nuclear elements (LINEs) are a group of non-LTR retrotransposons that are widespread in the genome of many eukaryotes. LINEs contain an internal Pol II promoter to initiate transcription into mRNA, and encode one or two proteins, ORF1 and ORF2. The functional domains present within ORF1 vary greatly among LINEs, but often exhibit RNA/DNA binding activity. ORF2 is essential to successful retrotransposition, and encodes a protein with both reverse transcriptase and endonuclease activity.

Transposable elements are short strands of repetitive DNA that can self-replicate and translocate within genomes of plants, animals, and prokaryotes, and they are generally perceived as parasitic in nature. Their transcription can lead to the production of dsRNAs, which resemble retrovirus transcripts. While most host cellular RNA has a singular, unpaired sense strand, dsRNA possesses sense and anti-sense transcripts paired together, and this difference in structure allows an host organism to detect dsRNA production, and thereby the presence of transposons. Plants lack distinct divisions between somatic cells and reproductive cells, and also have, generally, larger genomes than animals and prokaryotes, making plants an intriguing case-study for better understanding the epigenetic regulation and function of transposable elements.

<span class="mw-page-title-main">Short interspersed nuclear element</span>

Short interspersed nuclear elements (SINEs) are non-autonomous, non-coding transposable elements (TEs) that are about 100 to 700 base pairs in length. They are a class of retrotransposons, DNA elements that amplify themselves throughout eukaryotic genomes, often through RNA intermediates. SINEs compose about 13% of the mammalian genome.

DNA transposons are DNA sequences, sometimes referred to "jumping genes", that can move and integrate to different locations within the genome. They are class II transposable elements (TEs) that move through a DNA intermediate, as opposed to class I TEs, retrotransposons, that move through an RNA intermediate. DNA transposons can move in the DNA of an organism via a single-or double-stranded DNA intermediate. DNA transposons have been found in both prokaryotic and eukaryotic organisms. They can make up a significant portion of an organism's genome, particularly in eukaryotes. In prokaryotes, TE's can facilitate the horizontal transfer of antibiotic resistance or other genes associated with virulence. After replicating and propagating in a host, all transposon copies become inactivated and are lost unless the transposon passes to a genome by starting a new life cycle with horizontal transfer. It is important to note that DNA transposons do not randomly insert themselves into the genome, but rather show preference for specific sites.

Polintons are large DNA transposons which contain genes with homology to viral proteins and which are often found in eukaryotic genomes. They were first discovered in the mid-2000s and are the largest and most complex known DNA transposons. Polintons encode up to 10 individual proteins and derive their name from two key proteins, a DNA polymerase and a retroviral-like integrase.

Transib is a superfamily of interspersed repeats DNA transposons. It was named after the Trans-Siberian Express. It is similar to EnSpm/CACTA.

References

  1. Vladimir V. Kapitonov & Jerzy Jurka (March 21, 2006). "Self-synthesizing DNA transposons in eukaryotes". PNAS . 103 (12). National Academy of Sciences: 4540–4545. Bibcode:2006PNAS..103.4540K. doi: 10.1073/pnas.0600833103 . PMC   1450207 . PMID   16537396.
  2. Vladimir V. Kapitonov and Jerzy Jurka (October 2007). "Helitrons on a roll: eukaryotic rolling-circle transposons". Trends in Genetics . 23 (10): 521–9. doi:10.1016/j.tig.2007.08.004. PMID   17850916.
  3. S Lehnert, Vladimir Kapitonov, Pushpike J Thilakarathne and FC Schuit (May 23, 2011). "Modeling the asymmetric evolution of a mouse and rat-specific microRNA gene cluster intron 10 of the Sfmbt2 gene". BMC Genomics . 12: 257. doi: 10.1186/1471-2164-12-257 . PMC   3212979 . PMID   21605348.{{cite journal}}: CS1 maint: multiple names: authors list (link)