Volasertib

Last updated
Volasertib
Volasertib.svg
Clinical data
Routes of
administration
Oral and Intravenous
Identifiers
  • N-((1S,4S)-4-(4-(cyclopropylmethyl)piperazin-1-yl)cyclohexyl)-4-(((R)-7-ethyl-8-isopropyl-5-methyl-6-oxo-5,6,7,8-tetrahydropteridin-2-yl)amino)-3-methoxybenzamide
CAS Number
IUPHAR/BPS
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.246.197 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C34H50N8O3
Molar mass 618.827 g·mol−1
3D model (JSmol)
  • CC[C@H]1N(c2nc(ncc2N(C1=O)C)Nc3c(cc(cc3)C(=O)N[C@H]4CC[C@@H](CC4)N5CCN(CC5)CC6CC6)OC)C(C)C
  • InChI=1S/C34H50N8O3/c1-6-28-33(44)39(4)29-20-35-34(38-31(29)42(28)22(2)3)37-27-14-9-24(19-30(27)45-5)32(43)36-25-10-12-26(13-11-25)41-17-15-40(16-18-41)21-23-7-8-23/h9,14,19-20,22-23,25-26,28H,6-8,10-13,15-18,21H2,1-5H3,(H,36,43)(H,35,37,38)/t25-,26-,28-/m1/s1 X mark.svgN
  • Key:SXNJFOWDRLKDSF-STROYTFGSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Volasertib (also known as BI 6727) is an experimental small molecule inhibitor of the PLK1 (polo-like kinase 1) protein being developed by Boehringer Ingelheim for use as an anti-cancer agent. Volasertib is the second in a novel class of drugs called dihydropteridinone derivatives. [1]

Contents

Volasertib was awarded breakthrough drug status in September 2013 [2] and orphan drug status for acute myeloid leukemia in April 2014. [3]

Mechanism of action

Volasertib is a novel small-molecule targeted therapy that blocks cell division by competitively binding to the ATP-binding pocket of the PLK1 protein. PLK1 proteins are found in the nuclei of all dividing cells and control multiple stages of the cell cycle and cell division. [4] [5] [6] The levels of the PLK1 protein are tightly controlled and are raised in normal cells that are dividing. Raised levels of the PLK1 protein are also found in many cancers including; breast, non-small cell lung, colorectal, prostate, pancreatic, papillary thyroid, ovarian, head and neck and Non-Hodgkin’s Lymphoma. [5] [6] [7] [8] [9] [10] Raised levels of PLK1 increase the probability of improper segregation of chromosomes which is a critical stage in the development of many cancers. Raised levels of PLK1 have been associated with a poorer prognosis and overall survival in some cancers [6] [11] [12] In addition to its role in cell division, there is evidence that PLK1 also interacts with components of other pathways involved in cancer development including the K-Ras oncogene and the retinoblastoma and p53 tumour suppressors [13] These observations have led to PLK1 being recognised as an important target in the treatment of cancer.[ citation needed ]

Volasertib can be taken either orally or via intravenous infusion, once circulating in the blood stream it is distributed throughout the body, crosses the cell membrane and enters the nucleus of cells where it binds to its target; PLK1. Volasertib inhibits PLK1 preventing its roles in the cell-cycle and cell division which leads to cell arrest and programmed cell death. [4] Volasertib binds to and inhibits PLK1 at nanomolar doses however, it has also been shown to inhibit other PLK family members; PLK2 and PLK3 at higher; micromolar doses. The roles of PLK2 and PLK3 are less well understood; however they are known to be active during the cell cycle and cell division. [14]

Volasertib inhibits PLK1 in both cancer and normal cells; however it only causes irreversible inhibition and cell death in cancer cells, because inhibition of PLK1 in cancer cells arrests the cell cycle at a different point to normal, non-cancer cells. In cancer cells PLK1 inhibition results in G2/M cell cycle arrest followed by programmed cell death, however, in normal cells inhibition of PLK1 only causes temporary, reversible G1 and G2 arrest without programmed cell death. [15] This specificity for cancer cells improves the efficacy of the drug and minimizes the drug related toxicity.

Adverse effects

One of the undesirable effects of small-molecule drugs is that they can lack specificity for their target; hence bind to similar targets in other unrelated proteins, which can result in undesirable drug-related side effects. However, pre-clinical studies have shown volasertib binds in a highly selective manner to the kinase domain of the PLK family, without binding to other proteins with a kinase domain. Although it is now known to bind to phosphatidylionositol 5-phosphate 4-kinase. [16] Clinical studies have shown that at the maximum tolerated dose, side effects of volasertib include; anaemia (22%), thrombocytopenia, neutropenia and febrile neutropenia. [17] Common side effects as seen with other antimitotic agents such as vinca alkaloids and taxanes which include neuropathy, have not been observed with volasertib.

Studies

Preclinical studies on volasertib have demonstrated that it is highly effective at binding to and blocking PLK1 function and causing programmed cell death in colon and non-small cell lung cancer cells both in vitro and in vivo. Volasertib can also cause cell death in cancer cells that have are no longer sensitive to existing anti-mitotic drugs such as vinca alkaloids and taxanes. [15] This suggests that volasertib may be effective when used as a second line treatment in patients who have developed resistance to vinca alkaloid and taxane chemotherapeutics.[ citation needed ]

A first in man trial of volasertib in 65 patients with solid cancers reported that the drug is safe to administer to patients and is stable in the bloodstream. This study also reported favourable anti-cancer activity of the drug; three patients achieved a partial response, 48% of patients achieved stable disease and 6 patients achieved progression free survival of greater than 6 months. [17] A further phase 1 trial of volasertib in combination with cytarabine in patients with relapsed / refractory acute myeloid leukemia reported that 5 of 28 patients underwent a complete response, 2 achieved a partial response and a further 6 patients no worsening of their disease. [18]

Clinical trials

Volasertib is currently undergoing investigation in phase I and II trials and has yet to be licensed by the FDA. Volasertib may be effective in several malignancies evidenced by the fact that its target PLK1 is overexpressed in up to 80% of malignancies, where it has been associated with a poorer treatment outcome and reduced overall survival. [1] [6] [11] Further phase 1 and 2 trials are active, investigating the effects of Volasertib both as a single agent and in combination with other agents in solid tumors and hematological malignancies including; ovarian cancer, urothelial cancer and acute myeloid leukaemia, lymphomas, myelodysplastic syndromes, and non-small call lung cancer. [19] [3]

As of January 2017 it is in one phase III trial (for AML in over 65s), due to complete in February 2017. [20]

Related Research Articles

<span class="mw-page-title-main">Chronic myelogenous leukemia</span> Medical condition

Chronic myelogenous leukemia (CML), also known as chronic myeloid leukemia, is a cancer of the white blood cells. It is a form of leukemia characterized by the increased and unregulated growth of myeloid cells in the bone marrow and the accumulation of these cells in the blood. CML is a clonal bone marrow stem cell disorder in which a proliferation of mature granulocytes and their precursors is found; characteristic increase in basophils is clinically relevant. It is a type of myeloproliferative neoplasm associated with a characteristic chromosomal translocation called the Philadelphia chromosome.

<span class="mw-page-title-main">Cytarabine</span> Chemical compound (chemotherapy medication)

Cytarabine, also known as cytosine arabinoside (ara-C), is a chemotherapy medication used to treat acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), chronic myelogenous leukemia (CML), and non-Hodgkin's lymphoma. It is given by injection into a vein, under the skin, or into the cerebrospinal fluid. There is a liposomal formulation for which there is tentative evidence of better outcomes in lymphoma involving the meninges.

<span class="mw-page-title-main">History of cancer chemotherapy</span>

The era of cancer chemotherapy began in the 1940s with the first use of nitrogen mustards and folic acid antagonist drugs. The targeted therapy revolution has arrived, but many of the principles and limitations of chemotherapy discovered by the early researchers still apply.

<span class="mw-page-title-main">Lapatinib</span> Cancer medication

Lapatinib (INN), used in the form of lapatinib ditosylate (USAN) is an orally active drug for breast cancer and other solid tumours. It is a dual tyrosine kinase inhibitor which interrupts the HER2/neu and epidermal growth factor receptor (EGFR) pathways. It is used in combination therapy for HER2-positive breast cancer. It is used for the treatment of patients with advanced or metastatic breast cancer whose tumors overexpress HER2 (ErbB2).

<span class="mw-page-title-main">Nilotinib</span> Chemical compound

Nilotinib, sold under the brand name Tasigna marketed worldwide by Novartis, is a medication used to treat chronic myelogenous leukemia (CML) which has the Philadelphia chromosome. It may be used both in initial cases of chronic phase CML as well as in accelerated and chronic phase CML that has not responded to imatinib. It is taken by mouth.

Vorinostat (rINN), also known as suberoylanilide hydroxamic acid, is a member of a larger class of compounds that inhibit histone deacetylases (HDAC). Histone deacetylase inhibitors (HDI) have a broad spectrum of epigenetic activities.

<span class="mw-page-title-main">Acute myeloblastic leukemia with maturation</span> Medical condition

Acute myeloblastic leukemia with maturation (M2) is a subtype of acute myeloid leukemia (AML).

<span class="mw-page-title-main">CD135</span> Protein-coding gene in the species Homo sapiens

Cluster of differentiation antigen 135 (CD135) also known as fms like tyrosine kinase 3, receptor-type tyrosine-protein kinase FLT3, or fetal liver kinase-2 (Flk2) is a protein that in humans is encoded by the FLT3 gene. FLT3 is a cytokine receptor which belongs to the receptor tyrosine kinase class III. CD135 is the receptor for the cytokine Flt3 ligand (FLT3L).

<span class="mw-page-title-main">PLK1</span> Mammalian protein found in Homo sapiens

Serine/threonine-protein kinase PLK1, also known as polo-like kinase 1 (PLK-1) or serine/threonine-protein kinase 13 (STPK13), is an enzyme that in humans is encoded by the PLK1 gene.

<span class="mw-page-title-main">Axitinib</span> Chemical compound

Axitinib, sold under the brand name Inlyta, is a small molecule tyrosine kinase inhibitor developed by Pfizer. It has been shown to significantly inhibit growth of breast cancer in animal (xenograft) models and has shown partial responses in clinical trials with renal cell carcinoma (RCC) and several other tumour types.

<span class="mw-page-title-main">AXL receptor tyrosine kinase</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein kinase receptor UFO is an enzyme that in humans is encoded by the AXL gene. The gene was initially designated as UFO, in allusion to the unidentified function of this protein. However, in the years since its discovery, research into AXL's expression profile and mechanism has made it an increasingly attractive target, especially for cancer therapeutics. In recent years, AXL has emerged as a key facilitator of immune escape and drug-resistance by cancer cells, leading to aggressive and metastatic cancers.

<span class="mw-page-title-main">Lestaurtinib</span> Chemical compound

Lestaurtinib is a tyrosine kinase inhibitor structurally related to staurosporine. This semisynthetic derivative of the indolocarbazole K252a was investigated by Cephalon as a treatment for various types of cancer. It is an inhibitor of the kinases fms-like tyrosine kinase 3 (FLT3), Janus kinase 2 (JAK2), tropomyosin receptor kinase (trk) A (TrkA), TrkB and TrkC.

<span class="mw-page-title-main">Omacetaxine mepesuccinate</span> Chemical compound

Omacetaxine mepesuccinate, formerly named as homoharringtonine or HHT, is a pharmaceutical drug substance that is indicated for treatment of chronic myeloid leukemia (CML).

<span class="mw-page-title-main">Tyrosine kinase inhibitor</span> Drug typically used in cancer treatment

A tyrosine kinase inhibitor (TKI) is a pharmaceutical drug that inhibits tyrosine kinases. Tyrosine kinases are enzymes responsible for the activation of many proteins by signal transduction cascades. The proteins are activated by adding a phosphate group to the protein (phosphorylation), a step that TKIs inhibit. TKIs are typically used as anticancer drugs. For example, they have substantially improved outcomes in chronic myelogenous leukemia. They have also been used to treat other diseases, such as idiopathic pulmonary fibrosis.

<span class="mw-page-title-main">Crenolanib</span> Chemical compound

Crenolanib besylate is an investigational inhibitor being developed by AROG Pharmaceuticals, LLC. The compound is currently being evaluated for safety and efficacy in clinical trials for various types of cancer, including acute myeloid leukemia (AML), gastrointestinal stromal tumor (GIST), and glioma. Crenolanib is an orally bioavailable benzimidazole that selectively and potently inhibits signaling of wild-type and mutant isoforms of class III receptor tyrosine kinases (RTK) FLT3, PDGFR α, and PDGFR β. Unlike most RTK inhibitors, crenolanib is a type I mutant-specific inhibitor that preferentially binds to phosphorylated active kinases with the ‘DFG in’ conformation motif.

Quizartinib, sold under the brand name Vanflyta, is an anti-cancer medication used for the treatment of acute myeloid leukemia.

<span class="mw-page-title-main">Midostaurin</span> Chemical compound

Midostaurin, sold under the brand name Rydapt & Tauritmo both by Novartis, is a multi-targeted protein kinase inhibitor that has been investigated for the treatment of acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and advanced systemic mastocytosis. It is a semi-synthetic derivative of staurosporine, an alkaloid from the bacterium Streptomyces staurosporeus.

<span class="mw-page-title-main">BI 811283</span> Chemical compound

BI 811283 is a small molecule inhibitor of the Aurora B kinase protein being developed by Boehringer Ingelheim for use as an anti-cancer agent. BI 811283 is currently in the early stages of clinical development and is undergoing first in human trials in patients with solid tumors and acute myeloid leukemia.

mTOR inhibitors Class of pharmaceutical drugs

mTOR inhibitors are a class of drugs used to treat several human diseases, including cancer, autoimmune diseases, and neurodegeneration. They function by inhibiting the mammalian target of rapamycin (mTOR), which is a serine/threonine-specific protein kinase that belongs to the family of phosphatidylinositol-3 kinase (PI3K) related kinases (PIKKs). mTOR regulates cellular metabolism, growth, and proliferation by forming and signaling through two protein complexes, mTORC1 and mTORC2. The most established mTOR inhibitors are so-called rapalogs, which have shown tumor responses in clinical trials against various tumor types.

<span class="mw-page-title-main">Filanesib</span> Chemical compound

Filanesib is a kinesin spindle protein (KIF11) inhibitor which has recently been proposed as a cancer treatment, specifically for multiple myeloma.

References

  1. 1 2 Schöffski P (June 2009). "Polo-like kinase (PLK) inhibitors in preclinical and early clinical development in oncology". The Oncologist. 14 (6): 559–70. doi: 10.1634/theoncologist.2009-0010 . PMID   19474163.
  2. "Volasertib* receives FDA Breakthrough Therapy designation for treatment of patients with acute myeloid leukaemia". Boehringer Ingelheim. 17 September 2013. Archived from the original on 4 February 2017.
  3. 1 2 "Volasertib - Boehringer Ingelheim". AdisInsight. Springer Nature Switzerland AG.
  4. 1 2 Barr FA, Silljé HH, Nigg EA (June 2004). "Polo-like kinases and the orchestration of cell division". Nature Reviews. Molecular Cell Biology. 5 (6): 429–40. doi:10.1038/nrm1401. PMID   15173822. S2CID   7093201.
  5. 1 2 Garland LL, Taylor C, Pilkington DL, Cohen JL, Von Hoff DD (September 2006). "A phase I pharmacokinetic study of HMN-214, a novel oral stilbene derivative with polo-like kinase-1-interacting properties, in patients with advanced solid tumors". Clinical Cancer Research. 12 (17): 5182–9. doi: 10.1158/1078-0432.ccr-06-0214 . PMID   16951237.
  6. 1 2 3 4 Santamaria A, Neef R, Eberspächer U, Eis K, Husemann M, Mumberg D, et al. (October 2007). "Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis". Molecular Biology of the Cell. 18 (10): 4024–36. doi:10.1091/mbc.E07-05-0517. PMC   1995727 . PMID   17671160.
  7. Fisher RA, Ferris DK (2002). "The functions of Polo-like kinases and their relevance to human disease". Curr Med Chem. 2 (2): 125–134. doi:10.2174/1568013023358906.
  8. Holtrich U, Wolf G, Bräuninger A, Karn T, Böhme B, Rübsamen-Waigmann H, et al. (March 1994). "Induction and down-regulation of PLK, a human serine/threonine kinase expressed in proliferating cells and tumors". Proceedings of the National Academy of Sciences of the United States of America. 91 (5): 1736–40. Bibcode:1994PNAS...91.1736H. doi: 10.1073/pnas.91.5.1736 . PMC   43238 . PMID   8127874.
  9. Steegmaier M, Hoffmann M, Baum A, Lénárt P, Petronczki M, Krssák M, et al. (February 2007). "BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo". Current Biology. 17 (4): 316–22. Bibcode:2007CBio...17..316S. doi:10.1016/j.cub.2006.12.037. hdl: 21.11116/0000-0002-1033-2 . PMID   17291758. S2CID   14953248.
  10. Winkles JA, Alberts GF (January 2005). "Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues". Oncogene. 24 (2): 260–6. doi:10.1038/sj.onc.1208219. PMID   15640841. S2CID   21329670.
  11. 1 2 Eckerdt F, Yuan J, Strebhardt K (January 2005). "Polo-like kinases and oncogenesis". Oncogene. 24 (2): 267–76. doi:10.1038/sj.onc.1208273. PMID   15640842. S2CID   19968071.
  12. Weichert W, Ullrich A, Schmidt M, Gekeler V, Noske A, Niesporek S, et al. (April 2006). "Expression patterns of polo-like kinase 1 in human gastric cancer". Cancer Science. 97 (4): 271–6. doi: 10.1111/j.1349-7006.2006.00170.x . PMID   16630118.
  13. Liu X, Erikson RL (May 2003). "Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells". Proceedings of the National Academy of Sciences of the United States of America. 100 (10): 5789–94. Bibcode:2003PNAS..100.5789L. doi: 10.1073/pnas.1031523100 . PMC   156279 . PMID   12732729.
  14. Schmit TL, Ahmad N (July 2007). "Regulation of mitosis via mitotic kinases: new opportunities for cancer management". Molecular Cancer Therapeutics. 6 (7): 1920–31. doi: 10.1158/1535-7163.mct-06-0781 . PMID   17620424.
  15. 1 2 Rudolph D, Steegmaier M, Hoffmann M, Grauert M, Baum A, Quant J, et al. (May 2009). "BI 6727, a Polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity". Clinical Cancer Research. 15 (9): 3094–102. doi: 10.1158/1078-0432.ccr-08-2445 . PMID   19383823.
  16. Chen S, Chandra Tjin C, Gao X, Xue Y, Jiao H, Zhang R, et al. (May 2021). "Pharmacological inhibition of PI5P4Kα/β disrupts cell energy metabolism and selectively kills p53-null tumor cells". Proceedings of the National Academy of Sciences of the United States of America. 118 (21). Bibcode:2021PNAS..11802486C. doi: 10.1073/pnas.2002486118 . PMC   8166193 . PMID   34001596.
  17. 1 2 Gil T, Schoffski P, Awada A, Dumez H, Bartholomeus S, Selleslach J, et al. (May 2010). "Final analysis of a phase I single dose-escalation study of the novel polo-like kinase 1 inhibitor BI 6727 in patients with advanced solid tumors". Journal of Clinical Oncology. 20 (28, 15_suppl): 3061. doi:10.1200/jco.2010.28.15_suppl.3061.
  18. Bug G, Schlenk RF, Müller-Tidow C, Lübbert M, Krämer A, Fleischer F, et al. (November 2010). "Phase I/II study of BI 6727 (volasertib), an intravenous polo-like kinase-1 (Plk1) inhibitor, in patients with acute myeloid leukemia (AML): results of the dose finding for BI 6727 in combination with low-dose cytarabine". Blood. 116 (21): Abstract 3316. doi:10.1182/blood.V116.21.3316.3316.
  19. "Clinical Trials.gov Search of: Volasertib". ClinicalTrials.gov. 2011.
  20. Clinical trial number NCT01721876 for "Volasertib in Combination With Low-dose Cytarabine in Patients Aged 65 Years and Above With Previously Untreated Acute Myeloid Leukemia, Who Are Ineligible for Intensive Remission Induction Therapy (POLO-AML-2)" at ClinicalTrials.gov