Von Economo neuron

Last updated
Von Economo neuron
Spindle-cell.png
Cartoon of a normal pyramidal cell (left) compared with a von Economo cell (right)
Details
Location Anterior cingulate cortex (ACC) and Fronto-insular cortex (FI)
ShapeUnique spindle-shaped projection neuron
FunctionGlobal firing rate regulation and regulation of emotional state
Presynaptic connectionsLocal input to ACC and FI
Postsynaptic connections Frontal and temporal cortex
Anatomical terms of neuroanatomy
Micrograph showing a von Economo neuron of the cingulate. HE-LFB stain. Spindle neurons - very high mag - cropped.jpg
Micrograph showing a von Economo neuron of the cingulate. HE-LFB stain.

Von Economo neurons, also called spindle neurons, are a specific class of mammalian cortical neurons characterized by a large spindle-shaped soma (or body) gradually tapering into a single apical axon (the ramification that transmits signals) in one direction, with only a single dendrite (the ramification that receives signals) facing opposite. Other cortical neurons tend to have many dendrites, and the bipolar-shaped morphology of von Economo neurons is unique here.

Contents

Von Economo neurons are found in two very restricted regions in the brains of hominids (humans and other great apes): the anterior cingulate cortex (ACC) and the fronto-insular cortex (FI) (which each make up the salience network). In 2008, they were also found in the dorsolateral prefrontal cortex of humans. [1] Von Economo neurons are also found in the brains of a number of cetaceans, [2] [3] [4] African and Asian elephants, [5] and to a lesser extent in macaque monkeys [6] and raccoons. [7] The appearance of von Economo neurons in distantly related clades suggests that they represent convergent evolution  specifically, as an adaptation to accommodate the increasing size of these distantly-related animals' brains.

Von Economo neurons were discovered and first described in 1925 by Austrian psychiatrist and neurologist Constantin von Economo (1876–1931). [8] [9]

Function

Von Economo neurons are relatively large cells that may allow rapid communication across the relatively large brains of great apes, elephants, and cetaceans. Although rare in comparison to other neurons, von Economo neurons are abundant, and comparatively large, in humans; they are however three times as abundant in cetaceans. [3] [10]

Evolutionary significance

The discovery of von Economo neurons in diverse whale species [3] [4] has led to the suggestion that they are "a possible obligatory neuronal adaptation in very large brains, permitting fast information processing and transfer along highly specific projections and that evolved in relation to emerging social behaviors." [4] :254 The apparent presence of these specialized neurons only in highly intelligent mammals may be an example of convergent evolution. [11]

Their restriction among the primates to great apes leads to the hypothesis that they developed no earlier than 15–20 million years ago, prior to the divergence of orangutans from the African great apes. Recently, primitive forms of von Economo neurons have also been discovered in macaque monkey brains [12] and raccoons. [7]

In the anterior cingulate cortex

In 1999, American neuroscientist John Allman and colleagues at the California Institute of Technology first published a report on von Economo neurons found in the anterior cingulate cortex (ACC) of hominids but not any other species. Neuronal volumes of ACC von Economo neurons were larger in humans and bonobos than the von Economo neurons of the chimpanzee, gorilla and orangutan. [13]

Allman and his colleagues have delved beyond the level of brain infrastructure to investigate how von Economo neurons function at the superstructural level, focusing on their role as "air traffic controllers for emotions ... at the heart of the human social emotion circuitry, including a moral sense". [14] [15] Allman's team proposes that von Economo neurons help channel neural signals from deep within the cortex to relatively distant parts of the brain. [14] Specifically, Allman's team found signals from the ACC are received in Brodmann's area 10, in the frontal polar cortex, where regulation of cognitive dissonance (disambiguation between alternatives) is thought to occur. According to Allman, this neural relay appears to convey motivation to act, and concerns the recognition of error. Self-control and avoidance of error is thus facilitated by the executive gatekeeping function of the ACC, as it regulates the interference patterns of neural signals between these two brain regions. [16]

In humans, intense emotion activates the anterior cingulate cortex, as it relays neural signals transmitted from the amygdala (a primary processing center for emotions) to the frontal cortex, perhaps by functioning as a sort of lens to focus the complex texture of neural signal interference patterns.[ citation needed ] The ACC is also active during demanding tasks requiring judgement and discrimination and when errors are detected by an individual. During difficult tasks, or when experiencing intense love, anger, or lust, activation of the ACC increases. In brain imaging studies, the ACC has specifically been found to be active when mothers hear infants cry, underscoring its role in affording a heightened degree of social sensitivity.

The ACC is a relatively ancient cortical region and is involved with many autonomic functions, including motor and digestive functions, while also playing a role in the regulation of blood pressure and heart rate. Significant olfactory and gustatory capabilities of the ACC and fronto-insular cortex appear to have been usurped, during recent evolution, to serve enhanced roles related to higher cognition ranging from planning and self-awareness to role-playing and deception. The diminished olfactory function of humans, compared with other primates, may be related to the fact that von Economo neurons located at crucial neural network hubs have only two dendrites rather than many, resulting in reduced neurological integration.[ citation needed ]

In the fronto-insular cortex

At a Society for Neuroscience meeting in 2003, Allman reported on von Economo neurons his team found in another brain region, the fronto-insular cortex, a region which appears to have undergone significant evolutionary adaptations in mankind perhaps as recently as 100,000 years ago.

This fronto-insular cortex is closely connected to the insula, a region that is roughly the size of a thumb in each hemisphere of the human brain. The insula and fronto-insular cortex are part of the insular cortex, wherein the elaborate circuitry associated with spatial awareness are found, and where self-awareness and the complexities of emotion are thought to be generated and experienced. Moreover, this region of the right hemisphere is crucial to navigation and perception of three-dimensional rotations.

Concentrations

Anterior cingulate cortex

The largest number of ACC von Economo neurons are found in humans, fewer in the gracile great apes, and fewest in the robust great apes. In both humans and bonobos they are often found in clusters of 3 to 6 neurons. They are found in humans, chimpanzees, gorillas, orangutans, some cetaceans, and elephants. [17] :245 While total quantities of ACC von Economo neurons were not reported by Allman in his seminal research report (as they were in a later report describing their presence in the frontoinsular cortex, below), his team's initial analysis of the ACC layer V in hominids revealed an average of ~9 von Economo neurons per section for orangutans (rare, 0.6% of section cells), ~22 for gorillas (frequent, 2.3%), ~37 for chimpanzees (abundant, 3.8%), ~68 for bonobos (abundant/clusters, 4.8%), ~89 for humans (abundant/clusters, 5.6%). [18]

Fronto-insular cortex

All of the primates examined had more von Economo neurons in the fronto-insula of the right hemisphere than in the left. In contrast to the higher number of von Economo neurons found in the ACC of the gracile bonobos and chimpanzees, the number of fronto-insular von Economo neurons was far higher in the cortex of robust gorillas (no data for orangutans was given). An adult human had 82,855 such cells, a gorilla had 16,710, a bonobo had 2,159, and a chimpanzee had a mere 1,808 despite the fact that chimpanzees and bonobos are great apes most closely related to humans.

Dorsolateral prefrontal cortex

Von Economo neurons have been located in the dorsolateral prefrontal cortex of humans [1] and elephants. [5] In humans they have been observed in higher concentration in Brodmann area 9 (BA9) mostly isolated, or in clusters of 2, while in Brodmann area 24 (BA24) they have been found mostly in clusters of 2–4. [1]

Clinical significance

Abnormal von Economo neuron development may be linked to several psychotic disorders, typically those characterized by distortions of reality, disturbances of thought, disturbances of language, and withdrawal from social contact.[ citation needed ] Altered von Economo neuron states have been implicated in both schizophrenia and autism, but research into these correlations remains at a very early stage.[ citation needed ] Frontotemporal dementia involves loss of mostly von Economo neurons. [19] An initial study suggested that Alzheimer's disease specifically targeted von Economo neurons; this study was performed with end-stage Alzheimer brains in which cell destruction was widespread, but later it was found that Alzheimer's disease does not affect the von Economo neurons.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Brain</span> Organ central to the nervous system

The brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for special senses such as vision, hearing and olfaction. Being the most specialized organ, it is responsible for receiving information from the sensory nervous system, processing those information and the coordination of motor control.

<span class="mw-page-title-main">Cerebral cortex</span> Outer layer of the cerebrum of the mammalian brain

The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. It is the largest site of neural integration in the central nervous system, and plays a key role in attention, perception, awareness, thought, memory, language, and consciousness. The cerebral cortex is the part of the brain responsible for cognition.

<span class="mw-page-title-main">Neuropil</span> Type of area in the nervous system

Neuropil is any area in the nervous system composed of mostly unmyelinated axons, dendrites and glial cell processes that forms a synaptically dense region containing a relatively low number of cell bodies. The most prevalent anatomical region of neuropil is the brain which, although not completely composed of neuropil, does have the largest and highest synaptically concentrated areas of neuropil in the body. For example, the neocortex and olfactory bulb both contain neuropil.

<span class="mw-page-title-main">Cetacean intelligence</span> Intellectual capacity of cetaceans

Cetacean intelligence is the overall intelligence and derived cognitive ability of aquatic mammals belonging in the infraorder Cetacea (cetaceans), including baleen whales, porpoises, and dolphins. In 2014, a study found for first time that the long-finned pilot whale has more neocortical neurons than any other mammal, including humans, examined to date.

<span class="mw-page-title-main">Anterior cingulate cortex</span> Brain region

In the human brain, the anterior cingulate cortex (ACC) is the frontal part of the cingulate cortex that resembles a "collar" surrounding the frontal part of the corpus callosum. It consists of Brodmann areas 24, 32, and 33.

<span class="mw-page-title-main">Neocortex</span> Mammalian structure involved in higher-order brain functions

The neocortex, also called the neopallium, isocortex, or the six-layered cortex, is a set of layers of the mammalian cerebral cortex involved in higher-order brain functions such as sensory perception, cognition, generation of motor commands, spatial reasoning and language. The neocortex is further subdivided into the true isocortex and the proisocortex.

Encephalization quotient (EQ), encephalization level (EL), or just encephalization is a relative brain size measure that is defined as the ratio between observed and predicted brain mass for an animal of a given size, based on nonlinear regression on a range of reference species. It has been used as a proxy for intelligence and thus as a possible way of comparing the intelligence levels of different species. For this purpose, it is a more refined measurement than the raw brain-to-body mass ratio, as it takes into account allometric effects. Expressed as a formula, the relationship has been developed for mammals and may not yield relevant results when applied outside this group.

<span class="mw-page-title-main">Insular cortex</span> Portion of the mammalian cerebral cortex

The insular cortex is a portion of the cerebral cortex folded deep within the lateral sulcus within each hemisphere of the mammalian brain.

John Morgan Allman is an American neuroscientist at the California Institute of Technology in Pasadena, California, active in the fields of primates, cognition and evolutionary neuroscience.

The evolution of human intelligence is closely tied to the evolution of the human brain and to the origin of language. The timeline of human evolution spans approximately seven million years, from the separation of the genus Pan until the emergence of behavioral modernity by 50,000 years ago. The first three million years of this timeline concern Sahelanthropus, the following two million concern Australopithecus and the final two million span the history of the genus Homo in the Paleolithic era.

<span class="mw-page-title-main">Emotion in animals</span> Research into similarities between non-human and human emotions

Emotion is defined as any mental experience with high intensity and high hedonic content. The existence and nature of emotions in non-human animals are believed to be correlated with those of humans and to have evolved from the same mechanisms. Charles Darwin was one of the first scientists to write about the subject, and his observational approach has since developed into a more robust, hypothesis-driven, scientific approach. Cognitive bias tests and learned helplessness models have shown feelings of optimism and pessimism in a wide range of species, including rats, dogs, cats, rhesus macaques, sheep, chicks, starlings, pigs, and honeybees. Jaak Panksepp played a large role in the study of animal emotion, basing his research on the neurological aspect. Mentioning seven core emotional feelings reflected through a variety of neuro-dynamic limbic emotional action systems, including seeking, fear, rage, lust, care, panic and play. Through brain stimulation and pharmacological challenges, such emotional responses can be effectively monitored.

<span class="mw-page-title-main">Radial glial cell</span> Bipolar-shaped progenitor cells of all neurons in the cerebral cortex and some glia

Radial glial cells, or radial glial progenitor cells (RGPs), are bipolar-shaped progenitor cells that are responsible for producing all of the neurons in the cerebral cortex. RGPs also produce certain lineages of glia, including astrocytes and oligodendrocytes. Their cell bodies (somata) reside in the embryonic ventricular zone, which lies next to the developing ventricular system.

<span class="mw-page-title-main">Bipolar neuron</span> Neuron with only one axon and one dendrite

A bipolar neuron, or bipolar cell, is a type of neuron characterized by having both an axon and a dendrite extending from the soma in opposite directions. These neurons are predominantly found in the retina and olfactory system. The embryological period encompassing weeks seven through eight marks the commencement of bipolar neuron development. Many bipolar cells are specialized sensory neurons for the transmission of sense. As such, they are part of the sensory pathways for smell, sight, taste, hearing, touch, balance and proprioception. The other shape classifications of neurons include unipolar, pseudounipolar and multipolar. During embryonic development, pseudounipolar neurons begin as bipolar in shape but become pseudounipolar as they mature.

<span class="mw-page-title-main">Elephant cognition</span> Intelligence and awareness in elephants

Elephant cognition is animal cognition as present in elephants. Most contemporary ethologists view the elephant as one of the world's most intelligent animals. With a mass of just over 5 kg (11 lb), an elephant's brain has more mass than that of any other land animal, and although the largest whales have body masses twenty times those of a typical elephant, a whale's brain is barely twice the mass of an elephant's brain. In addition, elephants have around 257 billion neurons. Elephant brains are similar to those of humans and many other mammals in terms of general connectivity and functional areas, with several unique structural differences. Although initially estimated to have as many neurons as a human brain, the elephant's brain has about three times the amount of neurons as a human brain. However, the elephant's cerebral cortex has about one-third of the number of neurons as a human's cerebral cortex.

<span class="mw-page-title-main">Constantin von Economo</span> Austrian psychiatrist and neurologist

Constantin Freiherr von Economo was an Austrian psychiatrist and neurologist of Romanian origin. He is mostly known for his discovery of encephalitis lethargica and his atlas of cytoarchitectonics of the cerebral cortex.

<i>Demonic Males</i> 1996 book by Richard Wrangham and Dale Peterson

Demonic Males: Apes and the Origins of Human Violence is a 1996 book by Richard Wrangham and Dale Peterson examining the evolutionary factors leading to human male violence.

<span class="mw-page-title-main">Evolution of the brain</span> Overview of the evolution of the brain

There is much to be discovered about the evolution of the brain and the principles that govern it. While much has been discovered, not everything currently known is well understood. The evolution of the brain has appeared to exhibit diverging adaptations within taxonomic classes such as Mammalia and more vastly diverse adaptations across other taxonomic classes. Brain to body size scales allometrically. This means as body size changes, so do other physiological, anatomical, and biochemical constructs connecting the brain to the body. Small bodied mammals have relatively large brains compared to their bodies whereas large mammals have smaller brain to body ratios. If brain weight is plotted against body weight for primates, the regression line of the sample points can indicate the brain power of a primate species. Lemurs for example fall below this line which means that for a primate of equivalent size, a larger brain would be expected. Humans lie well above the line indicating that humans are more encephalized than lemurs. In fact, humans are more encephalized compared to all other primates. This means that human brains have exhibited a larger evolutionary increase in complexity relative to size. Some of these evolutionary changes have been found to be linked to multiple genetic factors, such as proteins and other organelles.

<span class="mw-page-title-main">Lunate sulcus</span>

In brain anatomy, the lunate sulcus or simian sulcus, also known as the sulcus lunatus, is a fissure in the occipital lobe variably found in humans and more often larger when present in apes and monkeys. The lunate sulcus marks the transition between V1 and V2.

<span class="mw-page-title-main">Salience network</span> Large-scale brain network involved in detecting and attending to relevant stimuli

The salience network (SN), also known anatomically as the midcingulo-insular network (M-CIN) or ventral attention network, is a large scale network of the human brain that is primarily composed of the anterior insula (AI) and dorsal anterior cingulate cortex (dACC). It is involved in detecting and filtering salient stimuli, as well as in recruiting relevant functional networks. Together with its interconnected brain networks, the SN contributes to a variety of complex functions, including communication, social behavior, and self-awareness through the integration of sensory, emotional, and cognitive information.

References

  1. 1 2 3 Fajardo; Escobar, M.I.; Buriticá, E.; Arteaga, G.; Umbarila, J.; Casanova, M.F.; Pimienta, H.; et al. (4 March 2008). "Von Economo neurons are present in the dorsolateral (dysgranular) prefrontal cortex of humans". Neuroscience Letters. 435 (3): 215–218. doi:10.1016/j.neulet.2008.02.048. PMID   18355958. S2CID   8454354.
  2. Coghlan, A. (27 November 2006). "Whales boast the brain cells that 'make us human'". New Scientist . Archived from the original on 16 April 2008.
  3. 1 2 3 Hof PR, Van der Gucht E (January 2007). "Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae)". Anatomical Record. 290 (1): 1–31. doi: 10.1002/ar.20407 . PMID   17441195.
  4. 1 2 3 Butti C, Sherwood CC, Hakeem AY, Allman JM, Hof PR (July 2009). "Total number and volume of Von Economo neurons in the cerebral cortex of cetaceans". The Journal of Comparative Neurology. 515 (2): 243–259. doi:10.1002/cne.22055. PMID   19412956. S2CID   6876656.
  5. 1 2 Hakeem, A. Y.; Sherwood, C. C.; Bonar, C. J.; Butti, C.; Hof, P. R.; Allman, J. M. (2009). "Von Economo neurons in the elephant brain". The Anatomical Record. 292 (2): 242–248. doi: 10.1002/ar.20829 . PMID   19089889.
  6. Evrard HC, Forro T, Logothetis NK (May 2012). "Von Economo neurons in the anterior insula of the macaque monkey". Neuron. 74 (3): 482–489. doi: 10.1016/j.neuron.2012.03.003 . PMID   22578500.
  7. 1 2 Lambert KG, Bardi M, Landis T, Hyer MM, Rzucidlo A, Gehrt S, Anchor C, Jardim Messeder D, Herculano-Houzel S (2014). "Behind the Mask: Neurobiological indicants of emotional resilience and cognitive function in wild raccoons (Procyon lotor)". Society for Neuroscience.
  8. von Economo, C., & Koskinas, G. N. (1929). The cytoarchitectonics of the human cerebral cortex. London: Oxford University Press
  9. Triarhou, LC (2006). "The signalling contributions of Constantin von Economo to basic, clinical and evolutionary neuroscience". Brain Research Bulletin. 69 (3): 223–43. doi:10.1016/j.brainresbull.2006.02.001. PMID   16564418. S2CID   21477302.
  10. Coghlan, A. (27 November 2006). "Whales boast the brain cells that 'make us human'". New Scientist. Archived from the original on 16 April 2008.
  11. Hakeem, Atiya Y.; Sherwood, Chet C.; Bonar, Christopher J.; Butti, Camilla; Hof, Patrick R.; Allman, John M. (16 December 2009). "Von Economo Neurons in the Elephant Brain". The Anatomical Record. 292 (2): 242–248. doi: 10.1002/ar.20829 . PMID   19089889.
  12. "Rare neurons linked to empathy and self-awareness discovered in monkey brains". ScienceDaily. Retrieved 2020-06-28.
  13. Nimchinsky, EA; Gilissen, E; Allman, JM; Perl, DP; Erwin, JM; Hof, PR (Apr 1999). "A neuronalmorphologic type unique to humans and great apes". Proc Natl Acad Sci U S A. 96 (9): 5268–5273. Bibcode:1999PNAS...96.5268N. doi: 10.1073/pnas.96.9.5268 . PMC   21853 . PMID   10220455.
  14. 1 2 Allman, JM; Hakeem, A; Erwin, JM; Nimchinsky, E; Hof, P (May 2001). "The anterior cingulatecortex. The evolution of an interface between emotion and cognition". Ann N Y Acad Sci. 935: 107–117. doi:10.1111/j.1749-6632.2001.tb03476.x. PMID   11411161. S2CID   10507342.
  15. Blakeslee, Sandra. "Humanity? Maybe It's in the Wiring" (PDF). The New York Times.
  16. Allman, J; Hakeem, A; Watson, K (Aug 2002). "Two phylogenetic specializations in the humanbrain". Neuroscientist. 8 (4): 335–346. doi:10.1177/107385840200800409. PMID   12194502. S2CID   2427631.
  17. Hakeem, Atiya Y.; Chet. C. Sherwood; Christopher J. Bonar; Camilla Butti; Patrick R. Hof; John M. Allman (December 2009). "Von Economo Neurons in the Elephant Brain". The Anatomical Record. 292 (2): 242–248. doi: 10.1002/ar.20829 . PMID   19089889.
  18. Allman J, Hakeem A, Watson K (Aug 2002). "Two phylogenetic specializations in the human brain". Neuroscientist. 8 (4): 335–346. doi:10.1177/107385840200800409. PMID   12194502. S2CID   2427631.
  19. Seeley WW, Carlin DA, Allman JM, Macedo MN, Bush C, Miller BL, Dearmond SJ (December 2006). "Early frontotemporal dementia targets neurons unique to apes and humans". Annals of Neurology. 60 (6): 660–667. doi:10.1002/ana.21055. PMID   17187353. S2CID   7976979.
General References