In fluid dynamics, vortex-induced vibrations (VIV) are motions induced on bodies interacting with an external fluid flow, produced by, or the motion producing, periodic irregularities on this flow.
A classic example is the VIV of an underwater cylinder. How this happens can be seen by putting a cylinder into the water (a swimming-pool or even a bucket) and moving it through the water in a direction perpendicular to its axis. Since real fluids always present some viscosity, the flow around the cylinder will be slowed while in contact with its surface, forming a so-called boundary layer. At some point, however, that layer can separate from the body because of its excessive curvature. A vortex is then formed, changing the pressure distribution along the surface. When the vortex does not form symmetrically around the body (with respect to its midplane), different lift forces develop on each side of the body, thus leading to motion transverse to the flow. This motion changes the nature of the vortex formation in such a way as to lead to a limited motion amplitude (differently, than, from what would be expected in a typical case of resonance). This process then repeats until the flow rate changes substantially.
VIV manifests itself on many different branches of engineering, from cables to heat exchanger tube arrays. It is also a major consideration in the design of ocean structures. Thus, study of VIV is a part of many disciplines, incorporating fluid mechanics, structural mechanics, vibrations, computational fluid dynamics (CFD), acoustics, statistics, and smart materials.
They occur in many engineering situations, such as bridges, stacks, transmission lines, aircraft control surfaces, offshore structures, thermowells, engines, heat exchangers, marine cables, towed cables, drilling and production risers in petroleum production, mooring cables, moored structures, tethered structures, buoyancy and spar hulls, pipelines, cable-laying, members of jacketed structures, and other hydrodynamic and hydroacoustic applications. [2] The most recent interest in long cylindrical members [3] in water ensues from the development of hydrocarbon resources in depths of 1000 m or more. See also [4] and. [5]
Vortex-induced vibration (VIV) is an important source of fatigue damage of offshore oil exploration drilling, export, production risers, including steel catenary risers (SCRs) and tension leg platform (TLP) tendons or tethers. These slender structures experience both current flow and top-end vessel motions, which both give rise to the flow-structure relative motions and cause VIVs.
One of the classical open-flow problems in fluid mechanics concerns the flow around a circular cylinder, or more generally, a bluff body. At very low Reynolds numbers (based on the diameter of the circular member) the streamlines of the resulting flow is perfectly symmetric as expected from potential theory. However, as the Reynolds number is increased the flow becomes asymmetric and the so-called Kármán vortex street occurs. The motion of the cylinder thus generated due to the vortex shedding can be harnessed to generate electrical power. [6]
The Strouhal number relates the frequency of shedding to the velocity of the flow and a characteristic dimension of the body (diameter in the case of a cylinder). It is defined as and is named after Čeněk (Vincent) Strouhal (a Czech scientist). [7] In the equation fst is the vortex shedding frequency (or the Strouhal frequency) of a body at rest, D is the diameter of the circular cylinder, and U is the velocity of the ambient flow.
The Strouhal number for a cylinder is 0.2 over a wide range of flow velocities. The phenomenon of lock-in happens when the vortex shedding frequency becomes close to a natural fundamental frequency of vibration of a structure. When this occurs, large and damaging vibrations can result.
Much progress has been made during the past decade, both numerically and experimentally, toward the understanding of the kinematics (dynamics) of VIV, albeit in the low-Reynolds number regime. The fundamental reason for this is that VIV is not a small perturbation superimposed on a mean steady motion. It is an inherently nonlinear, self-governed or self-regulated, multi-degree-of-freedom phenomenon. It presents unsteady flow characteristics manifested by the existence of two unsteady shear layers and large-scale structures.
There is much that is known and understood and much that remains in the empirical/descriptive realm of knowledge: what is the dominant response frequency, the range of normalized velocity, the variation of the phase angle (by which the force leads the displacement), and the response amplitude in the synchronization range as a function of the controlling and influencing parameters? Industrial applications highlight our inability to predict the dynamic response of fluid–structure interactions. They continue to require the input of the in-phase and out-of-phase components of the lift coefficients (or the transverse force), in-line drag coefficients, correlation lengths, damping coefficients, relative roughness, shear, waves, and currents, among other governing and influencing parameters, and thus also require the input of relatively large safety factors. Fundamental studies as well as large-scale experiments (when these results are disseminated in the open literature) will provide the necessary understanding for the quantification of the relationships between the response of a structure and the governing and influencing parameters.
It cannot be emphasized strongly enough that the current state of the laboratory art concerns the interaction of a rigid body (mostly and most importantly for a circular cylinder) whose degrees of freedom have been reduced from six to often one (i.e., transverse motion) with a three-dimensional separated flow, dominated by large-scale vortical structures.
When a fluid flows around an object, the fluid exerts a force on the object. Lift is the component of this force that is perpendicular to the oncoming flow direction. It contrasts with the drag force, which is the component of the force parallel to the flow direction. Lift conventionally acts in an upward direction in order to counter the force of gravity, but it is defined to act perpendicular to the flow and therefore can act in any direction.
In dimensional analysis, the Strouhal number is a dimensionless number describing oscillating flow mechanisms. The parameter is named after Vincenc Strouhal, a Czech physicist who experimented in 1878 with wires experiencing vortex shedding and singing in the wind. The Strouhal number is an integral part of the fundamentals of fluid mechanics.
In fluid dynamics, a vortex is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil.
The 1940 Tacoma Narrows Bridge, the first bridge at this location, was a suspension bridge in the U.S. state of Washington that spanned the Tacoma Narrows strait of Puget Sound between Tacoma and the Kitsap Peninsula. It opened to traffic on July 1, 1940, and dramatically collapsed into Puget Sound on November 7 of the same year. The bridge's collapse has been described as "spectacular" and in subsequent decades "has attracted the attention of engineers, physicists, and mathematicians". Throughout its short existence, it was the world's third-longest suspension bridge by main span, behind the Golden Gate Bridge and the George Washington Bridge.
In fluid dynamics, a Kármán vortex street is a repeating pattern of swirling vortices, caused by a process known as vortex shedding, which is responsible for the unsteady separation of flow of a fluid around blunt bodies.
In fluid dynamics, vortex shedding is an oscillating flow that takes place when a fluid such as air or water flows past a bluff body at certain velocities, depending on the size and shape of the body. In this flow, vortices are created at the back of the body and detach periodically from either side of the body forming a Kármán vortex street. The fluid flow past the object creates alternating low-pressure vortices on the downstream side of the object. The object will tend to move toward the low-pressure zone.
Conductor gallop is the high-amplitude, low-frequency oscillation of overhead power lines due to wind. The movement of the wires occurs most commonly in the vertical plane, although horizontal or rotational motion is also possible. The natural frequency mode tends to be around 1 Hz, leading the often graceful periodic motion to also be known as conductor dancing. The oscillations can exhibit amplitudes in excess of a metre, and the displacement is sometimes sufficient for the phase conductors to infringe operating clearances, and causing flashover. The forceful motion also adds significantly to the loading stress on insulators and electricity pylons, raising the risk of mechanical failure of either.
In fluid dynamics, flow separation or boundary layer separation is the detachment of a boundary layer from a surface into a wake.
In fluid mechanics, the Roshko number (Ro) is a dimensionless number describing oscillating flow mechanisms. It is named after the American Professor of Aeronautics Anatol Roshko. It is defined as
The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil translating in a uniform fluid at a constant speed so large that the flow seen in the body-fixed frame is steady and unseparated. The theorem relates the lift generated by an airfoil to the speed of the airfoil through the fluid, the density of the fluid and the circulation around the airfoil. The circulation is defined as the line integral around a closed loop enclosing the airfoil of the component of the velocity of the fluid tangent to the loop. It is named after Martin Kutta and Nikolai Zhukovsky who first developed its key ideas in the early 20th century. Kutta–Joukowski theorem is an inviscid theory, but it is a good approximation for real viscous flow in typical aerodynamic applications.
J. Kim Vandiver is an American university professor at the Massachusetts Institute of Technology (MIT). Vandiver is the dean of undergraduate research and a professor of Mechanical and Ocean Engineering. He is one of the foremost authorities on the dynamics of offshore structures and flow-induced vibration and is a member of the faculty of the MIT-WHOI joint program in Oceanography/Applied Ocean Science and Engineering.
In fluid dynamics, the drag crisis is a phenomenon in which drag coefficient drops off suddenly as Reynolds number increases. This has been well studied for round bodies like spheres and cylinders. The drag coefficient of a sphere will change rapidly from about 0.5 to 0.2 at a Reynolds number in the range of 300000. This corresponds to the point where the flow pattern changes, leaving a narrower turbulent wake. The behavior is highly dependent on small differences in the condition of the surface of the sphere.
Thermowells are cylindrical fittings used to protect temperature sensors installed to monitor industrial processes. A thermowell consists of a tube closed at one end and mounted on the wall of the piping or vessel within which the fluid of interest flows. A temperature sensor, such as a thermometer, thermocouple, or resistance temperature detector, is inserted in the open end of the tube, which is usually in the open air outside the piping or vessel and any thermal insulation.
In fluid dynamics and elasticity, hydroelasticity or flexible fluid-structure interaction (FSI), is a branch of science which is concerned with the motion of deformable bodies through liquids. The theory of hydroelasticity has been adapted from aeroelasticity, to describe the effect of structural response of the body on the fluid around it.
In fluid dynamics, the Keulegan–Carpenter number, also called the period number, is a dimensionless quantity describing the relative importance of the drag forces over inertia forces for bluff objects in an oscillatory fluid flow. Or similarly, for objects that oscillate in a fluid at rest. For small Keulegan–Carpenter number inertia dominates, while for large numbers the (turbulence) drag forces are important.
In fluid dynamics the Morison equation is a semi-empirical equation for the inline force on a body in oscillatory flow. It is sometimes called the MOJS equation after all four authors—Morison, O'Brien, Johnson and Schaaf—of the 1950 paper in which the equation was introduced. The Morison equation is used to estimate the wave loads in the design of oil platforms and other offshore structures.
A steel catenary riser (SCR) is a common method of connecting a subsea pipeline to a deepwater floating or fixed oil production platform. SCRs are used to transfer fluids like oil, gas, injection water, etc. between the platforms and the pipelines.
The index of physics articles is split into multiple pages due to its size.
A Vortex flowmeter is a type of flowmeter used for measuring fluid flow rates in an enclosed conduit.
A whistle is a device that makes sound from air blown from one end forced through a small opening at the opposite end. They are shaped in a way that allows air to oscillate inside of a chamber in an unstable way. The physical theory of the sound-making process is an example of the application of fluid dynamics or hydrodynamics and aerodynamics. The principles relevant to whistle operation also have applications in other areas, such as fluid flow measurement.