Wolframin is a protein that in humans is encoded by the WFS1 gene. [5] [6] [7]
This gene encodes a transmembrane protein, which is located primarily in the endoplasmic reticulum and ubiquitously expressed with highest levels in brain, pancreas, heart, and insulinoma beta-cell lines. [7] Wolframin appears to function as a cation-selective ion channel. [8]
Mutations in this gene are associated with Wolfram syndrome, also called DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness), an autosomal recessive disorder. The disease is characterized by non-immune insulin-dependent diabetes mellitus and bilateral progressive optic atrophy, usually presenting in childhood or early adult life. Diverse neurologic symptoms, including a predisposition to psychiatric illness, may also be associated with this disorder. A large number and variety of mutations in this gene, particularly in exon 8, can be associated with this syndrome. Mutations in this gene can also cause autosomal dominant deafness 6 (DFNA6), also known as DFNA14 or DFNA38. [7]
Mutations in this gene have also been associated with congenital cataracts. [9]
Wolfram syndrome, also called DIDMOAD, is a rare autosomal-recessive genetic disorder that causes childhood-onset diabetes mellitus, optic atrophy, and deafness as well as various other possible disorders.
Kir6.2 is a major subunit of the ATP-sensitive K+ channel, a lipid-gated inward-rectifier potassium ion channel. The gene encoding the channel is called KCNJ11 and mutations in this gene are associated with congenital hyperinsulinism.
The CLCN family of voltage-dependent chloride channel genes comprises nine members which demonstrate quite diverse functional characteristics while sharing significant sequence homology. The protein encoded by this gene regulates the electric excitability of the skeletal muscle membrane. Mutations in this gene cause two forms of inherited human muscle disorders: recessive generalized myotonia congenita (Becker) and dominant myotonia (Thomsen).
ATP-binding cassette transporter sub-family C member 8 is a protein that in humans is encoded by the ABCC8 gene. ABCC8 orthologs have been identified in all mammals for which complete genome data are available.
Exostosin-1 is a protein that in humans is encoded by the EXT1 gene.
Eyes absent homolog 1 is a protein that in humans is encoded by the EYA1 gene.
Gap junction beta-3 protein (GJB3), also known as connexin 31 (Cx31) — is a protein that in humans is encoded by the GJB3 gene.
Crumbs homolog 1 is a protein that in humans is encoded by the CRB1 gene.
Transmembrane protease, serine 3 is an enzyme that in humans is encoded by the TMPRSS3 gene.
Potassium voltage-gated channel subfamily KQT member 4, also known as voltage-gated potassium channel subunit Kv7.4, is a protein that in humans is encoded by the KCNQ4 gene.
Non-syndromic hearing impairment protein 5 is a protein that in humans is encoded by the DFNA5 gene.
Alpha-tectorin is a protein that in humans is encoded by the TECTA gene.
Myosin-14 is a protein that in humans is encoded by the MYH14 gene.
Optic atrophy 3 protein is a protein that in humans is encoded by the OPA3 gene.
Eyes absent homolog 4 is a protein that in humans is encoded by the EYA4 gene.
Bardet–Biedl syndrome 2 protein is a protein that in humans is encoded by the BBS2 gene.
Transmembrane channel-like protein 1 is a protein that in humans is encoded by the TMC1 gene. TMC1 contains six transmembrane domains with both the C and N termini on the endoplasmic side of the membrane, as well as a large loop between domains 4 and 5. This topology is similar to that of transient receptor potential channels (TRPs), a family of proteins involved in the perception of senses such as temperature, taste, pressure, and vision. TMC1 has been located in the post-natal mouse cochlea, and knockouts for TMC1 and TMC2 result in both auditory and vestibular deficits indicating TMC1 is a molecular part of auditory transduction.
Forkhead box protein E3 (FOXE3) also known as forkhead-related transcription factor 8 (FREAC-8) is a protein that in humans is encoded by the FOXE3 gene located on the short arm of chromosome 1.
Autosomal dominant cerebellar ataxia, deafness, and narcolepsy is a rare progressive genetic disorder that primarily affects the nervous system and is characterized by sensorineural hearing loss, narcolepsy with cataplexy, and dementia later in life. People with this disorder usually start showing symptoms when they are in their early-mid adulthoods. It is a type of autosomal dominant cerebellar ataxia.
Wolfram-like syndrome is a rare autosomal dominant genetic disorder which shares some of the features shown by those affected with the autosomal recessive Wolfram syndrome. It is a type of WFS1-related disorder.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.