![]() | This article needs attention from an expert in statistics. The specific problem is: New article adapted from NIST document, needs checking and expansion by someone familiar with the topic.(August 2015) |
Wakeby distribution | |||
---|---|---|---|
Parameters | |||
Support | to , if Contentsto , otherwise | ||
Quantile |
The Wakeby distribution [1] is a five-parameter probability distribution defined by its quantile function,
and by its quantile density function,
where , ξ is a location parameter, α and γ are scale parameters and β and δ are shape parameters. [1]
This distribution was first proposed by Harold A. Thomas Jr., who named it after Wakeby Pond in Cape Cod. [2] [3]
The Wakeby distribution has been used for modeling distributions of
The following restrictions apply to the parameters of this distribution:
The domain of the Wakeby distribution is
With two shape parameters, the Wakeby distribution can model a wide variety of shapes. [1]
The cumulative distribution function is computed by numerically inverting the quantile function given above. The probability density function is then found by using the following relation (given on page 46 of Johnson, Kotz, and Balakrishnan [11] ):
where F is the cumulative distribution function and
An implementation that computes the probability density function of the Wakeby distribution is included in the Dataplot scientific computation library, as routine WAKPDF. [1]
An alternative to the above method is to define the PDF parametrically as . This can be set up as a probability density function, , by solving for the unique in the equation and returning .[ citation needed ]