The HWK 109-507 was a liquid-propellant rocket engine developed by Germany during World War II. It was used to propel the Hs 293 anti-ship guided missile.
It was produced by Hellmuth Walter Kommanditgesellschaft (HWK). Like other Walter engines it used hydrogen peroxide as a propellant.
The Hs293 has been variously described as a missile or as a boosted glide bomb. [1] It consisted of an SC500 bomb casing, fitted with wings, engine and radio control. Control equipment was housed in a rearward extension of the bomb casing but the motor was mounted in a separate housing beneath. It had originally been developed as an unpowered glide bomb, "Gustav Schwartz Propellerwerke", and the engine was added later. After flight tests, a visible tracking flare was also added, in a further rearward extension. [2]
As the engine was mounted below the missile fuselage, the exhaust nozzle pointed downwards at 30°, so as to align the line of thrust with the centre of gravity of the missile.
The engine had a burning time of around 10 seconds. After this the missile glided to the target, taking up to 100 seconds for a range of 8.5 km. [3]
As it was intended for attacking lightly- or unarmoured targets, it did not require an armour-piercing high impact speed. [lower-roman 1]
The same engine was also used for the planned Hs 294, Hs 295 and Hs 296 missiles. As these larger missiles weighed twice the Hs 293, they used a pair of the engines, one under each wing root. [4]
This engine was a development of the HWK 109-500 Starthilfe (rocket-assisted take-off) engine. The 109-500 was pod-mounted and parachuted back to earth after takeoff. Engine pods were serviced and re-used.
The 109-507 was developed from the 109-500. As a missile engine, it was only required to work once, and for a short duration. It was thus simplified in both its features and in its construction materials. Rather than the complex centrifugal turbopumps used for most Walter engines, a simple gas pressurisation system was used to feed the propellants. A wartime British report expressed surprise that the engine's combustion chamber was made of mere mild steel, rather than anything more refractory. [5]
The engine's fuel chemistry used 80% high test hydrogen peroxide or 'T-Stoff'. This was a 'cold cycle' engine; the peroxide acted as a monopropellant and was decomposed by a catalyst into superheated steam and oxygen. [lower-roman 2] The catalyst used was a consumable liquid solution of calcium permanganate or 'Z-Stoff'. As this catalyst is consumed, the engine is regarded as a bipropellant engine.
Propellants are forced into the combustion chamber by compressed air, stored at 200 bar (2,900 psi ) in two steel vessels. This pressure is released through an electrically-fired cartridge that opens a valve with a blow-out disc. This is the full extent of the electrical control system. Once fired, the valve does not close again. A pressure regulator delivers air at 33 bar (480 psi), through a shuttle valve that pressurised first the catalyst tanks and then the propellant tank. This delay ensures reliable ignition in the combustion chamber. A non-return valve ensures that no catalyst can flow backwards into the air or propellant plumbing, with an explosive result. A rubber diaphragm, broken as propellant pressure builds, ensures that there is no backflow through the combustion chamber either. [5] Z-stoff was known for problems of clogging injectors and so an inline filter was used. [lower-roman 3]
The propellant injector in the combustion chamber is a simple light alloy casting, cooled by the propellant flow. The combustion chamber is single-walled mild steel, with no provision for cooling. A steel mixing cup is downstream of the injector, with the radial Z-Stoff 6mm pipe leading into it. One 3 mm diameter injector nozzle points into the cup, thirty smaller radial 2 mm nozzles deliver most of the propellant along the walls of the chamber. Helical swirl baffles in the chamber promote good mixing and decomposition of the peroxide. [5]
Thrust varied through the boost phase, as air pressure and propellant flow fell, dropping from 600 kgf to 400 kgf. [6]
The engine pod had a dry weight of 517 kg, carrying 68 kg of propellants when full. [5]
A hypergolic propellant is a rocket propellant combination used in a rocket engine, whose components spontaneously ignite when they come into contact with each other.
A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly called rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.
T-Stoff (; 'substance T') was a stabilised high test peroxide used in Germany during World War II. T-Stoff was specified to contain 80% (occasionally 85%) hydrogen peroxide (H2O2), remainder water, with traces (<0.1%) of stabilisers. Stabilisers used included 0.0025% phosphoric acid, a mixture of phosphoric acid, sodium phosphate and 8-oxyquinoline, and sodium stannate.
The Henschel Hs 293 was a World War II German radio-guided glide bomb. It is the first operational anti-shipping missile, first used unsuccessfully on 25 August 1943 and then with increasing success over the next year, ultimately damaging or sinking at least 25 ships. Allied efforts to jam the radio control link were increasingly successful despite German efforts to counter them. The weapon remained in use through 1944 when it was also used as an air-to-ground weapon to attack bridges to prevent the Allied breakout after D-Day, but proved almost useless in this role.
The expander cycle is a power cycle of a bipropellant rocket engine. In this cycle, the fuel is used to cool the engine's combustion chamber, picking up heat and changing phase. The now heated and gaseous fuel then powers the turbine that drives the engine's fuel and oxidizer pumps before being injected into the combustion chamber and burned.
Hellmuth Walter was a German engineer who pioneered research into rocket engines and gas turbines. His most noteworthy contributions were rocket motors for the Messerschmitt Me 163 and Bachem Ba 349 interceptor aircraft, so-called Starthilfe jettisonable rocket propulsion units used for a variety of Luftwaffe aircraft during World War II, and a revolutionary new propulsion system for submarines known as air-independent propulsion (AIP).
A liquid-propellant rocket or liquid rocket utilizes a rocket engine that uses liquid propellants. Gaseous propellants may also be used but are not common because of their low density and difficulty with common pumping methods. Liquids are desirable because they have a reasonably high density and high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low. The rocket propellants are usually pumped into the combustion chamber with a lightweight centrifugal turbopump, although some aerospace companies have found ways to use electric pumps with batteries, allowing the propellants to be kept under low pressure. This permits the use of low-mass propellant tanks that do not need to resist the high pressures needed to store significant amounts of gasses, resulting in a low mass ratio for the rocket.
The J-2, commonly known as Rocketdyne J-2, was a liquid-fuel cryogenic rocket engine used on NASA's Saturn IB and Saturn V launch vehicles. Built in the United States by Rocketdyne, the J-2 burned cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, with each engine producing 1,033.1 kN (232,250 lbf) of thrust in vacuum. The engine's preliminary design dates back to recommendations of the 1959 Silverstein Committee. Rocketdyne won approval to develop the J-2 in June 1960 and the first flight, AS-201, occurred on 26 February 1966. The J-2 underwent several minor upgrades over its operational history to improve the engine's performance, with two major upgrade programs, the de Laval nozzle-type J-2S and aerospike-type J-2T, which were cancelled after the conclusion of the Apollo program.
Z-Stoff was a name for calcium permanganate or sodium permanganate mixed in water. It was normally used as a catalyst for T-Stoff in military rocket programs by Nazi Germany during World War II.
High-test peroxide (HTP) is a highly concentrated solution of hydrogen peroxide, with the remainder consisting predominantly of water. In contact with a catalyst, it decomposes into a high-temperature mixture of steam and oxygen, with no remaining liquid water. It was used as a propellant of HTP rockets and torpedoes, and has been used for high-performance vernier engines.
The highest specific impulse chemical rockets use liquid propellants. They can consist of a single chemical or a mix of two chemicals, called bipropellants. Bipropellants can further be divided into two categories; hypergolic propellants, which ignite when the fuel and oxidizer make contact, and non-hypergolic propellants which require an ignition source.
The Walter HWK 109-509 was a German liquid-fuel bipropellant rocket engine that powered the Messerschmitt Me 163 Komet and Bachem Ba 349 aircraft. It was produced by Hellmuth Walter Kommanditgesellschaft (HWK) commencing in 1943, with licensed production by the Heinkel firm's facilities in Jenbach, Austria.
Hellmuth Walter Kommanditgesellschaft (HWK), Helmuth Walter Werke (HWM), or commonly known as the Walter-Werke, was a German company founded by Professor Hellmuth Walter to pursue his interest in engines using hydrogen peroxide as a propellant.
The LR87 was an American liquid-propellant rocket engine used on the first stages of Titan intercontinental ballistic missiles and launch vehicles. Composed of twin motors with separate combustion chambers and turbopump machinery, it is considered a single unit and was never flown as a single combustion chamber engine or designed for this. The LR87 first flew in 1959.
Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.
The BMW 109-718 was a liquid-fuelled rocket engine developed by BMW at their Bruckmühl facility, in Germany during the Second World War.
The Walter HWK 109-500 was a liquid-fuelled rocket engine developed by Walter in Germany during the Second World War.
The BMW 109-558 is a liquid fuelled sustainer rocket motor developed by BMW at their Bruckmühl facility, in Germany during the Second World War.
The Bell Aerosystems Company XLR81 was an American liquid-propellant rocket engine, which was used on the Agena upper stage. It burned UDMH and RFNA fed by a turbopump in a fuel rich gas generator cycle. The turbopump had a single turbine with a gearbox to transmit power to the oxidizer and fuel pumps. The thrust chamber was all-aluminum, and regeneratively cooled by oxidizer flowing through gun-drilled passages in the combustion chamber and throat walls. The nozzle was a titanium radiatively cooled extension. The engine was mounted on a hydraulic actuated gimbal which enabled thrust vectoring to control pitch and yaw. Engine thrust and mixture ratio were controlled by cavitating flow venturis on the gas generator flow circuit. Engine start was achieved by solid propellant start cartridge.