Washington State University Reactor

Last updated
Washington State University Reactor
WSUReactorCore.JPG
The WSUR Core at Steady State 1MW
Operating Institution Washington State University
Location Pullman, Washington
Coordinates 46°44′10″N117°08′37″W / 46.73611111°N 117.14361111°W / 46.73611111; -117.14361111
Type TRIGA Conversion
Power1 MW (thermal)
Construction and Upkeep
Construction Cost$479,000 USD
Construction Began1957
First CriticalityMarch 7, 1961 (1961-03-07)
Staff3
Operators12
Technical Specifications
Max Thermal Flux 7.00E+12 n/cm^2-s (est.)
Max Fast Flux 4.00E+12 n/cm^2-s (est.)
Fuel Type TRIGA type
Cooling light water
Neutron Moderator Zr-H & light water
Neutron Reflector graphite
Control Rods1 B4C Pulse Rod, 3 Boral Blades, 1 Stainless Steel Blade
Cladding Material304 Stainless Steel

The Washington State University Reactor (WSUR) is housed in the Dodgen Research Facility, and was completed in 1961. The (then) Washington State College Reactor was the brainchild of Harold W. Dodgen, a former researcher on the Manhattan Project where he earned his PhD from 1943 to 1946. He secured funding for the ambitious 'Reactor Project' from the National Science Foundation, the Atomic Energy Commission, and the College administration totaling $479,000 ($1.63 million in 2022 dollars). Dodgen's basis for constructing a reactor was that the College was primely located as a training facility for the Hanford site, as well as Idaho National Laboratory because there was no other research reactor in the West at that time. After completing the extensive application and design process with the help of contractors from General Electric they broke ground in August 1957 and the first criticality was achieved on March 7, 1961 at a power level of 1W. They gradually increased power over the next year to achieve their maximum licensed operating power of 100 kW.

Contents

It was initially a General Electric Materials Test Reactor with plate-type fuel bundles, but was upgraded in 1967 to a 1MW General Atomics TRIGA (Teaching Research Isotopes General Atomics) reactor. [1] Standard TRIGA fuel rods are cylindrical rods, clad in stainless steel utilizing Uranium-235 dispersed in a ceramic zirconium-hydride matrix as fuel. [2] The WSUR operated with this TRIGA fuel until the Fuel Life Improvement Program (FLIP) once again upgraded the reactor in 1976 with a partial new core of high-enriched 'TRIGA FLIP' fuel designed for an extended lifetime. [1] Two years later, in 1978, due to global fears of nuclear proliferation it was federally mandated that all high-enriched reactor fuel (except for military use) be replaced with Low Enriched Uranium Fuel (LEU). [3] Due to the extensive work, cost, and the number of research reactors undergoing the procedure, the WSUR was not converted until October 2008. All FLIP fuel was replaced by another TRIGA fuel known as 30/20 LEU and when the new core went critical on October 7, 2008 it became the world's only mixed 8.5/20 (Standard TRIGA) and 30/20 LEU core. [4] The facility license was renewed for an additional 20 years upon completion of a safety analysis and review. The effective date was September 30, 2011.

Design

The WSUR core consists of a rectangular aluminum box suspended from a movable bridge structure. Surrounding the core is a 242,000 liter pool of high purity deionized light water, which is used as both a coolant, shield, and moderator. Inside the core box there is a bottom grid-plate into which 3 and 4-rod clusters of TRIGA fuel sit separated by boron-aluminum (Boral, boron carbide in aluminium matrix) control elements. These control elements are raised out of the core via servo-motors to control reactor power. Power is monitored via three different and independent detectors that sit inside the core structure; there is a compensated ion chamber, an uncompensated ion chamber, and a fission chamber in three of the four corners of the grid box. [5]

Due to the highly energetic nature of the fission process, a substantial amount of heat is generated during operation (~350 °C). The fuel is cooled by the natural convection of light water which is circulated through a plate-type heat exchanger with a primary and secondary loop. [5] A cooling tower is utilized to discharge heat from the secondary loop to the environment, ensuring that the system remains well within temperature limits while preventing environmental exposure of water which has contacted the reactor. [5] The WSUR is purely a research reactor, lacking both a pressure vessel and steam turbine which are used to generate electricity in power reactors.

The primary use for the WSUR is to generate neutrons which can be used for a multitude of experimental purposes. There are several specialized experimental facilities for Neutron Activation Analysis and isotope production (see below), and several generalized sample rotator tubes whereby samples are lowered into the core for a set time, then pulled back out and sent to the laboratory where the data analysis will take place. [1]

Pulsing

Like many TRIGA reactors, the WSUR has the ability to pulse. Ordinarily the WSUR runs at a steady state power level of 1MW, however because of the unique characteristics of TRIGA fuel it can be pulsed to approximately 1000 times this power for a very short amount of time. [5] This ability is due to the fact that TRIGA fuel is designed with a prompt negative temperature coefficient of reactivity, which means that as the fuel heats up, it becomes less and less reactive (it shuts itself down). So when one of the control elements (known as the transient rod) is ejected from the core via air pressure at high speeds, the reactor jumps in power from ~80 watts to over a 1 billion watts and back down again in 50 milliseconds, [5] causing a bright blue flash of Cerenkov radiation. [1] There is a video of this effect on the WSUNSC webpage (see references).

Research

Neutron activation analysis is a method used to determine elemental concentrations in unknown samples. It is especially useful for determining amounts of heavy metals (to parts per billion) in samples that are often as small as 10 mg. The WSUR can even do NAA research by pulsing samples. [6] Examples of past research projects that have used this unique and valuable analysis method include determining quantities of toxic metals, such as arsenic, zinc, and selenium in air filters, tree rings, and other environmental samples. NAA can also be used to find trace elements in biological materials. This can be especially useful in plant or animal nutrient and health studies. Argon dating of geological samples can even be performed using the reactor and associated NAA equipment. [1] The WSUR also uses the neutrons it generates to produce isotopes for various other fields.

Epithermal neutron beam facility

The WSU TRIGA reactor has an external epithermal neutron beam facility. This beam is a well-collimated, high-flux, medium energy dry neutron beam. It can also be modified to generate low energy neutrons. This beam facility is enclosed in a special high-radiation area room, and was built in conjunction with the Idaho National Engineering Laboratory for cancer research. Ongoing projects include Boron-Neutron Capture Therapy (BNCT) research, especially that research for a cure for brain tumors, although the beam can be used for any neutron-capture therapy. This beam can also be used for neutron radiography, a non-destructive technique for examining 'heavy' materials such as steel for internal 'light' materials, such as cracks in castings, voids in welds, or fluid flows inside pipes. [7]

Cobalt-60 source

The cobalt-60 gamma irradiator is also housed in the reactor pool and is a separate system from the reactor itself. The WSU College of Veterinary Medicine, as well as several Biology graduate students use the source as a means for sterilization of biological samples as it is much cheaper and faster than an autoclave.

See also

Related Research Articles

<span class="mw-page-title-main">Neutron activation analysis</span> Method used for determining the concentrations of elements in many materials

Neutron activation analysis (NAA) is a nuclear process used for determining the concentrations of elements in many materials. NAA allows discrete sampling of elements as it disregards the chemical form of a sample, and focuses solely on atomic nuclei. The method is based on neutron activation and thus requires a neutron source. The sample is bombarded with neutrons, causing its constituent elements to form radioactive isotopes. The radioactive emissions and radioactive decay paths for each element have long been studied and determined. Using this information, it is possible to study spectra of the emissions of the radioactive sample, and determine the concentrations of the various elements within it. A particular advantage of this technique is that it does not destroy the sample, and thus has been used for the analysis of works of art and historical artifacts. NAA can also be used to determine the activity of a radioactive sample.

NRX was a heavy-water-moderated, light-water-cooled, nuclear research reactor at the Canadian Chalk River Laboratories, which came into operation in 1947 at a design power rating of 10 MW (thermal), increasing to 42 MW by 1954. At the time of its construction, it was Canada's most expensive science facility and the world's most powerful nuclear research reactor. NRX was remarkable both in terms of its heat output and the number of free neutrons it generated. When a nuclear reactor such as NRX is operating, its nuclear chain reaction generates many free neutrons. In the late 1940s, NRX was the most intense neutron source in the world.

<span class="mw-page-title-main">Control rod</span> Device used to regulate the power of a nuclear reactor

Control rods are used in nuclear reactors to control the rate of fission of the nuclear fuel – uranium or plutonium. Their compositions include chemical elements such as boron, cadmium, silver, hafnium, or indium, that are capable of absorbing many neutrons without themselves decaying. These elements have different neutron capture cross sections for neutrons of various energies. Boiling water reactors (BWR), pressurized water reactors (PWR), and heavy-water reactors (HWR) operate with thermal neutrons, while breeder reactors operate with fast neutrons. Each reactor design can use different control rod materials based on the energy spectrum of its neutrons. Control rods have been used in nuclear aircraft engines like Project Pluto as a method of control.

<span class="mw-page-title-main">TRIGA</span> Class of nuclear reactor used for education and research

TRIGA is a class of nuclear research reactor designed and manufactured by General Atomics. The design team for TRIGA, which included Edward Teller, was led by the physicist Freeman Dyson.

<span class="mw-page-title-main">Nuclear fuel</span> Material fuelling nuclear reactors

Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission.

<span class="mw-page-title-main">Research reactor</span> Nuclear device not intended for power or weapons

Research reactors are nuclear fission-based nuclear reactors that serve primarily as a neutron source. They are also called non-power reactors, in contrast to power reactors that are used for electricity production, heat generation, or maritime propulsion.

The National Research Universal (NRU) reactor was a 135 MW nuclear research reactor built in the Chalk River Laboratories, Ontario, one of Canada’s national science facilities. It was a multipurpose science facility that served three main roles. It generated radionuclides used to treat or diagnose over 20 million people in 80 countries every year. It was the neutron source for the NRC Canadian Neutron Beam Centre: a materials research centre that grew from the Nobel Prize-winning work of Bertram Brockhouse. It was the test bed for Atomic Energy of Canada Limited to develop fuels and materials for the CANDU reactor. At the time of its retirement on March 31, 2018, it was the world's oldest operating nuclear reactor.

<span class="mw-page-title-main">SLOWPOKE reactor</span> Family of nuclear research reactors

The SLOWPOKE is a family of low-energy, tank-in-pool type nuclear research reactors designed by Atomic Energy of Canada Limited (AECL) beginning in the late 1960s. John W. Hilborn is the scientist most closely associated with their design. They are beryllium-reflected with a very low critical mass, but provide neutron fluxes higher than available from a small particle accelerator or other radioactive sources.

<span class="mw-page-title-main">Swimming pool reactor</span> Type of nuclear reactor

A swimming pool reactor, also called an open pool reactor, is a type of nuclear reactor that has a core immersed in an open pool usually of water.

<span class="mw-page-title-main">High Flux Isotope Reactor</span> Nuclear research reactor in Oak Ridge, Tennessee

The High Flux Isotope Reactor (HFIR) is a nuclear research reactor at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, United States. Operating at 85 MW, HFIR is one of the highest flux reactor-based sources of neutrons for condensed matter physics research in the United States, and it has one of the highest steady-state neutron fluxes of any research reactor in the world. The thermal and cold neutrons produced by HFIR are used to study physics, chemistry, materials science, engineering, and biology. The intense neutron flux, constant power density, and constant-length fuel cycles are used by more than 500 researchers each year for neutron scattering research into the fundamental properties of condensed matter. HFIR has about 600 users each year for both scattering and in-core research.

<span class="mw-page-title-main">Nuclear reactor physics</span> Field of physics dealing with nuclear reactors

Nuclear reactor physics is the field of physics that studies and deals with the applied study and engineering applications of chain reaction to induce a controlled rate of fission in a nuclear reactor for the production of energy. Most nuclear reactors use a chain reaction to induce a controlled rate of nuclear fission in fissile material, releasing both energy and free neutrons. A reactor consists of an assembly of nuclear fuel, usually surrounded by a neutron moderator such as regular water, heavy water, graphite, or zirconium hydride, and fitted with mechanisms such as control rods which control the rate of the reaction.

In applications such as nuclear reactors, a neutron poison is a substance with a large neutron absorption cross-section. In such applications, absorbing neutrons is normally an undesirable effect. However, neutron-absorbing materials, also called poisons, are intentionally inserted into some types of reactors in order to lower the high reactivity of their initial fresh fuel load. Some of these poisons deplete as they absorb neutrons during reactor operation, while others remain relatively constant.

The Pennsylvania State University (PSU) Radiation Science & Engineering Center (RSEC) houses the Breazeale Nuclear Reactor (BNR). This reactor is the oldest operating in the nation and has undergone numerous power upgrades, renovations, and other changes. The reactor serves the research purposes of the Penn State Department of Mechanical and Nuclear Engineering as well as researchers from industry and other universities. Its total licensed thermal output is 1.1 MW, however the reactor is procedurally limited to 1.0 MW (for 100% operation).

<span class="mw-page-title-main">Oregon State University Radiation Center</span> Building on the Oregon State University campus in Corvallis, Oregon, U.S.

The Oregon State University Radiation Center (OSURC) is a research facility that houses a nuclear reactor at Oregon State University (OSU) in Corvallis, Oregon, United States. The Oregon State TRIGA Reactor (OSTR) serves the research needs of the OSU nuclear engineering department along with other departments.

<span class="mw-page-title-main">Maria reactor</span>

The Maria reactor is Poland's second nuclear research reactor and is the only one still in use. It is located at Narodowe Centrum Badań Jądrowych (NCBJ) at Świerk-Otwock, near Warsaw and named in honor of Maria Skłodowska-Curie. It is the only reactor of Polish design.

<span class="mw-page-title-main">MIT Nuclear Research Reactor</span> Research nuclear reactor

The MIT Nuclear Research Reactor (MITR) serves the research purposes of the Massachusetts Institute of Technology. It is a tank-type 6 megawatt reactor that is moderated and cooled by light water and uses heavy water as a reflector. It is the second largest university-based research reactor in the U.S. and has been in operation since 1958. It is the fourth-oldest operating reactor in the country.

<span class="mw-page-title-main">Nuclear facilities in Iran</span>

Iran's nuclear program is made up of a number of nuclear facilities, including nuclear reactors and various nuclear fuel cycle facilities.

A nuclear reactor coolant is a coolant in a nuclear reactor used to remove heat from the nuclear reactor core and transfer it to electrical generators and the environment. Frequently, a chain of two coolant loops are used because the primary coolant loop takes on short-term radioactivity from the reactor.

<span class="mw-page-title-main">Pakistan Atomic Research Reactor</span> Pair of research nuclear reactors in Nilore, Islamabad, Pakistan

The Pakistan Atomic Research Reactor or (PARR) are two nuclear research reactors and two other experimental neutron sources located in the PINSTECH Laboratory, Nilore, Islamabad, Pakistan.

<span class="mw-page-title-main">FiR 1</span>

FiR 1 was Finland's first nuclear reactor. It was a research reactor that was located in the Otaniemi campus area in the city of Espoo. The TRIGA Mark II reactor had a thermal power of 250 kilowatts. It started operation in 1962, and it was permanently shut down in 2015. At first, the reactor was operated by Helsinki University of Technology (TKK), and since 1971 by VTT Technical Research Centre of Finland.

References

  1. 1 2 3 4 5 "Nuclear Radiation Center". Archived from the original on 2012-07-24. Retrieved 2015-10-07.
  2. "TRIGA® Home". Archived from the original on 2009-02-07. Retrieved 2009-11-14.
  3. "Non-Power Facilities".
  4. WSUNRC
  5. 1 2 3 4 5 United States. Nuclear Regulatory Commission. Research and Test Reactors. Safety Analysis Report for the Washington State University Modified TRIGA Nuclear Reactor. Washington DC: Nuclear Regulatory Commission, 2002. Print.
  6. Payne, R. F.; Drader, J. A.; Friese, J. I.; Greenwood, L. R.; Hines, C. C.; Metz, L. A.; Kephart, J. D.; King, M. D.; Pierson, B. D.; Smith, J. D.; Wall, D. E. "Neutron Fluence and Energy Reproducibility of a 2-Dollar TRIGA Reactor Pulse," J. Radioanal. Nucl. Chem., 2009, 282, 59-62.
  7. Nigg, D. W.; Venhizen, J. R.; Wemble, C. A.; Tripard, G. E.; Sharp, S.; Fox, K. "Flux and Instrumentation Upgrade for the Epithermal Neutron Beam Facility at Washington State University," Appl. Radiat. Isot.2004, 61.5, 993-996.