As described here, white light interferometry is a non-contact optical method for surface height measurement on 3D structures with surface profiles varying between tens of nanometers and a few centimeters. It is often used as an alternative name for coherence scanning interferometry in the context of areal surface topography instrumentation that relies on spectrally-broadband, visible-wavelength light (white light).
Interferometry makes use of the wave superposition principle to combine waves in a way that will cause the result of their combination to extract information from those instantaneous wave fronts. This works because when two waves combine, the resulting pattern is determined by the phase difference between the two waves—waves that are in phase will undergo constructive interference while waves that are out of phase will undergo destructive interference. While white light interferometry is not new, combining old interferometry techniques with modern electronics, computers, and software has produced extremely powerful measurement tools. Yuri Denisyuk and Emmett Leith, have done much in the area of white light holography and interferometry. [1] [2] [3] [4] [5] [6] [7]
Even though there are a number of different interferometer techniques, three are most prevalent:
While all three of these interferometers work with a white light source, only the first, the diffraction grating interferometer, is truly achromatic. [8] Here the vertical scanning or coherence probe interferometers are discussed in detail due to their extensive use for surface metrology in today’s high-precision industrial applications.
A CCD image sensor like those used for digital photography is placed at the point where the two images are superimposed. A broadband “white light” source is used to illuminate the test and reference surfaces. A condenser lens collimates the light from the broadband light source. A beam splitter separates the light into reference and measurement beams. The reference beam is reflected by the reference mirror, while the measurement beam is reflected or scattered from the test surface. The returning beams are relayed by the beam splitter to the CCD image sensor, and form an interference pattern of the test surface topography that is spatially sampled by the individual CCD pixels.
The interference occurs for white light when the path lengths of the measurement beam and the reference beam are nearly matched. By scanning (changing) the measurement beam path length relative to the reference beam, a correlogram is generated at each pixel. The width of the resulting correlogram is the coherence length, which depends strongly on the spectral width of the light source. A test surface having features of different heights leads to a phase pattern that is mixed with the light from the flat reference in the CCD image sensor plane. Interference occurs at the CCD pixel if the optical path lengths of the two arms differ less than half the coherence length of the light source. Each pixel of the CCD samples a different spatial position within the image of the test surface. A typical white light correlogram (interference signal) is produced when the length of the reference or measurement arm is scanned by a positioning stage through a path length match. The interference signal of a pixel has maximum modulation when the optical path length of light impinging on the pixel is exactly the same for the reference and the object beams. Therefore, the z-value for the point on the surface imaged by this pixel corresponds to the z-value of the positioning stage when the modulation of the correlogram is greatest. A matrix with the height values of the object surface can be derived by determining the z-values of the positioning stage where the modulation is greatest for every pixel. The vertical uncertainty depends mainly on the roughness of the measured surface. For smooth surfaces, the accuracy of the measurement is limited by the accuracy of the positioning stage. The lateral positions of the height values depend on the corresponding object point that is imaged by the pixel matrix. These lateral coordinates, together with the corresponding vertical coordinates, describe the surface topography of the object.
To visualize microscopic structures, it is necessary to combine an interferometer with the optics of a microscope. Such an arrangement is shown in Figure 3. This setup is similar to a standard optical microscope. The only differences are an interferometric objective lens and an accurate positioning stage (a piezoelectric actuator) to move the objective vertically. The optical magnification of the image on the CCD does not depend on the distance between tube lens and objective lens if the microscope images the object at infinity. The interference objective is the most important part of such a microscope. Different types of objectives are available. With a Mirau objective, as shown in Figure 3, the reference beam is reflected back in the direction of the objective front lens by a beam splitter. On the front lens there is a miniaturized mirror the same size as the illuminated surface on the object. Therefore, for high magnifications, the mirror is so small that its shadowing effect can be ignored. Moving the interference objective modifies the length of the measurement arm. The interference signal of a pixel has maximum modulation when the optical path length of light impinging on the pixel is exactly the same for the reference and the object beams. As before, the z-value for the point on the surface imaged by this pixel corresponds to the z-value of the positioning stage when the modulation of the correlogram is greatest.
As mentioned above, the z-value of the positioning stage, when the modulation of the interference signal for a certain pixel is greatest, defines the height value for this pixel. Therefore, the quality and shape of the correlogram have a major influence on the system’s resolution and accuracy. The most important features of the light source are its wavelength and coherence length. The coherence length determines the width of the correlogram, which relies on the spectral width of the light source, as well as on structural aspects such as the spatial coherence of the light source and the numerical aperture (NA) of the optical system. The following discussion assumes that the dominant contribution to the coherence length is the emission spectrum. In Figure 4, you can see the spectral density function for a Gaussian spectrum, which is, for example, a good approximation for a light emitting diode (LED). The corresponding intensity modulation is shown to be substantial only in the neighborhood of position z0 where the reference and object beams have the same length and superpose coherently. The z-range of the positioning stage in which the envelope of intensity modulation is higher than 1/e of the maximum value determines the correlogram width. This corresponds to the coherence length because the difference of the optical path length is twice the length difference of the reference and measurement arms of the interferometer. The relationship between correlogram width, coherence length and spectral width is calculated for the case of a Gaussian spectrum.
The normalized spectral density function is defined as
(1),
where is the effective 1/e-bandwidth and is the mean frequency. According to the generalized Wiener–Khinchin theorem, the autocorrelation function of the light field is given by the Fourier transformation of the spectral density:
(2)
which is measured by interfering the light field of reference and object beams. In the case that the intensities in both interferometer arms are the same, the intensity observed on the screen is
(3),
Here with and are the intensities from the measurement arm and the reference arm respectively. The mean frequency can be expressed by the central wavelength, and the effective bandwidth by means of the coherence length, . From equations 2 and 3 the intensity on the screen can be derived as
(4),
taking into account that with c being the speed of light. Accordingly, equation 4 describes the correlogram as shown in Figure 4. One can see that the distribution of the intensity is formed by a Gaussian envelope and a periodic modulation with the period . For every pixel the correlogram is sampled with a defined z-displacement step size. However, phase shifts at the object surface, inaccuracies of the positioning stage, dispersion differences between the arms of the interferometer, reflections from surfaces other than the object surface, and noise in the CCD can lead to a distorted correlogram. While a real correlogram may differ from the result in equation 4, the result clarifies the strong dependence of the correlogram on two parameters: the wavelength and the coherence length of the light source. In interference microscopy using white light, a more complete description of signal generation includes additional parameters related to spatial coherence. [9]
The envelope function (5)
is described by the exponential term of equation 4. The software calculates the envelope from the correlogram data. The principle of the envelope calculation is to remove the cosine term of equation 4. With the help of a Hilbert transformation the cosine term is changed into a sine term. The envelope is obtained by summing the powers of the cosine and sine-modulated correlograms:
(6).
Two slightly different algorithms are implemented for the calculation of the envelope maximum. The first algorithm is used to evaluate the envelope of the correlogram; the z-value is derived from the maximum. The second algorithm evaluates the phase in addition. With the automation interface (e.g. macros), either of the algorithms can be used. The uncertainty of the calculation of the envelope maximum depends on: the coherence length, the sampling step size of the correlogram, deviations of the z-values from desired values (e.g. due to vibrations), the contrast and the roughness of the surface. The best results are obtained with a short coherence length, a small sampling step size, good vibration isolation, high contrast and smooth surfaces.
In physics, interference is a phenomenon in which two coherent waves are combined by adding their intensities or displacements with due consideration for their phase difference. The resultant wave may have greater intensity or lower amplitude if the two waves are in phase or out of phase, respectively. Interference effects can be observed with all types of waves, for example, light, radio, acoustic, surface water waves, gravity waves, or matter waves as well as in loudspeakers as electrical waves.
In physics, coherence length is the propagation distance over which a coherent wave maintains a specified degree of coherence. Wave interference is strong when the paths taken by all of the interfering waves differ by less than the coherence length. A wave with a longer coherence length is closer to a perfect sinusoidal wave. Coherence length is important in holography and telecommunications engineering.
Fourier-transform spectroscopy is a measurement technique whereby spectra are collected based on measurements of the coherence of a radiative source, using time-domain or space-domain measurements of the radiation, electromagnetic or not. It can be applied to a variety of types of spectroscopy including optical spectroscopy, infrared spectroscopy, nuclear magnetic resonance (NMR) and magnetic resonance spectroscopic imaging (MRSI), mass spectrometry and electron spin resonance spectroscopy.
Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy, quantum mechanics, nuclear and particle physics, plasma physics, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.
In optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical cavity made from two parallel reflecting surfaces. Optical waves can pass through the optical cavity only when they are in resonance with it. It is named after Charles Fabry and Alfred Perot, who developed the instrument in 1899. Etalon is from the French étalon, meaning "measuring gauge" or "standard".
Tunable diode laser absorption spectroscopy is a technique for measuring the concentration of certain species such as methane, water vapor and many more, in a gaseous mixture using tunable diode lasers and laser absorption spectrometry. The advantage of TDLAS over other techniques for concentration measurement is its ability to achieve very low detection limits. Apart from concentration, it is also possible to determine the temperature, pressure, velocity and mass flux of the gas under observation. TDLAS is by far the most common laser based absorption technique for quantitative assessments of species in gas phase.
The Mach–Zehnder interferometer is a device used to determine the relative phase shift variations between two collimated beams derived by splitting light from a single source. The interferometer has been used, among other things, to measure phase shifts between the two beams caused by a sample or a change in length of one of the paths. The apparatus is named after the physicists Ludwig Mach and Ludwig Zehnder; Zehnder's proposal in an 1891 article was refined by Mach in an 1892 article. Demonstrations of Mach–Zehnder interferometry with particles other than photons had been demonstrated as well in multiple experiments.
The Michelson interferometer is a common configuration for optical interferometry and was invented by the 19/20th-century American physicist Albert Abraham Michelson. Using a beam splitter, a light source is split into two arms. Each of those light beams is reflected back toward the beamsplitter which then combines their amplitudes using the superposition principle. The resulting interference pattern that is not directed back toward the source is typically directed to some type of photoelectric detector or camera. For different applications of the interferometer, the two light paths can be with different lengths or incorporate optical elements or even materials under test.
Optical coherence tomography (OCT) is an imaging technique that uses low-coherence light to capture micrometer-resolution, two- and three-dimensional images from within optical scattering media. It is used for medical imaging and industrial nondestructive testing (NDT). Optical coherence tomography is based on low-coherence interferometry, typically employing near-infrared light. The use of relatively long wavelength light allows it to penetrate into the scattering medium. Confocal microscopy, another optical technique, typically penetrates less deeply into the sample but with higher resolution.
The interferometric visibility is a measure of the contrast of interference in any system subject to wave superposition. Examples include as optics, quantum mechanics, water waves, sound waves, or electrical signals. Visibility is defined as the ratio of the amplitude of the interference pattern to the sum of the powers of the individual waves. The interferometric visibility gives a practical way to measure the coherence of two waves. A theoretical definition of the coherence is given by the degree of coherence, using the notion of correlation.
The optical transfer function (OTF) of an optical system such as a camera, microscope, human eye, or projector specifies how different spatial frequencies are captured or transmitted. It is used by optical engineers to describe how the optics project light from the object or scene onto a photographic film, detector array, retina, screen, or simply the next item in the optical transmission chain. A variant, the modulation transfer function (MTF), neglects phase effects, but is equivalent to the OTF in many situations.
Acousto-optics is a branch of physics that studies the interactions between sound waves and light waves, especially the diffraction of laser light by ultrasound through an ultrasonic grating.
Free spectral range (FSR) is the spacing in optical frequency or wavelength between two successive reflected or transmitted optical intensity maxima or minima of an interferometer or diffractive optical element.
A white light scanner (WLS) is a device for performing surface height measurements of an object using coherence scanning interferometry (CSI) with spectrally-broadband, "white light" illumination. Different configurations of scanning interferometer may be used to measure macroscopic objects with surface profiles measuring in the centimeter range, to microscopic objects with surface profiles measuring in the micrometer range. For large-scale non-interferometric measurement systems, see structured-light 3D scanner.
Self-mixing or back-injection laser interferometry is an interferometric technique in which a part of the light reflected by a vibrating target is reflected into the laser cavity, causing a modulation both in amplitude and in frequency of the emitted optical beam. In this way, the laser becomes sensitive to the distance traveled by the reflected beam thus becoming a distance, speed or vibration sensor. The advantage compared to a traditional measurement system is a lower cost thanks to the absence of collimation optics and external photodiodes.
Ramsey interferometry, also known as the separated oscillating fields method, is a form of particle interferometry that uses the phenomenon of magnetic resonance to measure transition frequencies of particles. It was developed in 1949 by Norman Ramsey, who built upon the ideas of his mentor, Isidor Isaac Rabi, who initially developed a technique for measuring particle transition frequencies. Ramsey's method is used today in atomic clocks and in the S.I. definition of the second. Most precision atomic measurements, such as modern atom interferometers and quantum logic gates, have a Ramsey-type configuration. A more modern method, known as Ramsey–Bordé interferometry uses a Ramsey configuration and was developed by French physicist Christian Bordé and is known as the Ramsey–Bordé interferometer. Bordé's main idea was to use atomic recoil to create a beam splitter of different geometries for an atom-wave. The Ramsey–Bordé interferometer specifically uses two pairs of counter-propagating interaction waves, and another method named the "photon-echo" uses two co-propagating pairs of interaction waves.
Optical coherence tomography (OCT) is a technique that displays images of the tissue by using the backscattered light.
In quantum physics, light is in a squeezed state if its electric field strength Ԑ for some phases has a quantum uncertainty smaller than that of a coherent state. The term squeezing thus refers to a reduced quantum uncertainty. To obey Heisenberg's uncertainty relation, a squeezed state must also have phases at which the electric field uncertainty is anti-squeezed, i.e. larger than that of a coherent state. Since 2019, the gravitational-wave observatories LIGO and Virgo employ squeezed laser light, which has significantly increased the rate of observed gravitational-wave events.
Optical holography is a technique which enables an optical wavefront to be recorded and later re-constructed. Holography is best known as a method of generating three-dimensional images but it also has a wide range of other applications.
SU(1,1) interferometry is a technique that uses parametric amplification for splitting and mixing of electromagnetic waves for precise estimation of phase change and achieves the Heisenberg limit of sensitivity with fewer optical elements than conventional interferometric techniques.