Wildflower strip

Last updated
A wildflower strip at Pensthorpe Wildflower strip at Pensthorpe.jpg
A wildflower strip at Pensthorpe
A flowering strip with cornflower dominance between cereal fields as a field trial in Germany Mechtenberg2009.jpg
A flowering strip with cornflower dominance between cereal fields as a field trial in Germany

A wildflower strip is a section of land set aside to grow wildflowers. These can be at the edge of a field to mitigate against agricultural intensification and monoculture; along road medians and verges; or in parkland or other open spaces such as the Coronation Meadows. Such strips provide an attractive amenity and can also improve biodiversity, conserving birds, insects and other wildlife. [1] [2] [3] [4]

Contents

General characteristics

Wildflower strips are semi-natural habitats made up of mixtures of native herbaceous species and can be sown on arable field margins to provide multiple ecological, agricultural and conservation benefits. They typically measure 3 – 10 m in width [5] and vary in their plant species composition depending on their intended purpose.

Wildflower strips can serve various purposes. They may provide nectar sources for pollinators, promote biological pest control, or enhance local biodiversity by improving habitat quality and diversity.

Early conceptions of wildflower strips were developed in Switzerland in the 1980s. These ideas were merged under the German name "Buntbrachen" (wildflower strips) and established within Swiss agricultural policy. [6]

Wildflower strips can be naturally regenerated on a range of soil types. On nutrient-rich soils, the plant community is likely to have low species richness and be dominated by vigorous grasses. Therefore, lighter soils may be preferable to give all species present a reasonable chance. [5]

Infield wildflower strips have been trialled as an alternative to traditional wildflower strips that border field margins. This approach involves extending wildflower strips beyond field boundaries to traverse the centre of fields. These measures can be seen as an extension to in-field beetle banks and are primarily aimed at making a larger proportion of arable crops easily accessible to natural enemies of crop pests. [7]

Ecological benefits and conservation value

Wildflower strips not only add colour and aesthetic appeal to the otherwise homogeneous agricultural landscape, but also provide food, shelter and overwintering sites for arthropods. [8] These arthropods can play an important role in controlling insect pests of commercial crops. [9] [10] They can also help pollinate crops, as do bumblebees and honeybees, which are attracted to the wildflowers for its source of nectar. Pest-controlling arthropods benefit from the high insulation capacity of the vegetation in the former case, making the wildflower strips suitable as overwintering sites during winter. [11] Wildflower strips can significantly enhance local biodiversity and mitigate declines in economically important invertebrate populations through intensive agriculture. They may be regarded as ecological compensation areas interspersed in a highly disturbed, wildlife-impoverished agroecosystem. [5]


Wildflower strips can also improve habitat connectivity within the agricultural landscape by functioning as wildlife corridors for beneficiary taxa. [6]

Economic benefits

Wildflower strips can benefit agriculture by attracting pollinating insects and pest-controlling arthropods. This can potentially improving crop yields. It is usually worthwhile to sow strips of wildflowers along a given area if the resulting increase in natural pollination improves crop yields beyond those obtained in the absence of wildflower strips. Investing in relatively inexpensive seed mixtures to create wildflower strips is an effective way for farmers to promote natural pollination and reduce reliance on commercially sourced pollinators, such as bumblebees. This also ensures against potential market supply failures. [12]

Restoring semi-natural habitats for pollinators can help offset the loss of pollination services caused by declines in pollinating insects, for example by establishing wildflower strips along field margins.. [13]

Effectiveness

While generally beneficial to wildlife, the success of a wildflower strip, from both an ecological and an agricultural perspective, depends on several important factors, such as the right plant species composition and the local landscape context in which the strip is established. [13] Ultimately however, the right choice of plant species to sow in the right place depends on the specific conservation goals of the wildflower strip. In an intensive agricultural landscape, for example, the best option may be to sow wildflower strips with a mixture of seeds from different species to attract a more taxonomically diverse range of pollinators. On the other hand, wildflower strips can be planted with a smaller range of species in a targeted approach to help save endangered pollinating insect species. In this case, seed mixtures should primarily contain the preferred host plants of the species in question [14]

To ensure a viable network of natural or near-natural habitats within the landscape to support wildlife movement, it is important to connect multiple wildflower strips to each other and to elements in the wider landscape elements. [5] However, it can take several years of vegetation growth and development before the ecological benefits appear.. [10]

Wildflower strips should be designed to ensure seasonal continuity of floral resources for as long as possible in any given year. This can be achieved by sowing a mixture of annuals, biennials, and perennials at high densities and with differing flowering times. [5] By sowing species with different individual flowering times next to each other, the resulting wildflower strip will be available for use by a range of arthropods for more of the year. [15] This design also benefits insects with long colony cycles such as bumblebees. [13]

Ideal dominant plants within wildflower strips include species in the Fabaceae, which are especially favoured by pollinating bees, or Apiaceae (carrot family), which attract pest-controlling arthropods. [16] It is important to avoid choosing dominant species that are sensitive to herbivory by slugs and snails, such as Centaurea cyanus or Papaver rhoeas , since this can affect the growth and development of the wildflower strip. [17]

The economic practicality of planting and maintaining wildflower strips at the farmer's end is another consideration. Farmers will need to invest in the initial seed mixture for sowing and account for the cost of maintaining the wildflower strip in subsequent years to prevent invasion of vigorous grass species or other perennial weeds.. [5]

The larva of target species may benefit from the selective sowing of food plants in wildflower strips, which can help achieve conservation goals. However, this aspect is often overlooked when designing agri-environment schemes. [18]

Related Research Articles

<span class="mw-page-title-main">Monoculture</span> Farms producing only one crop at a time

In agriculture, monoculture is the practice of growing one crop species in a field at a time. Monoculture is widely used in intensive farming and in organic farming: both a 1,000-hectare cornfield and a 10-ha field of organic kale are monocultures. Monoculture of crops has allowed farmers to increase efficiency in planting, managing, and harvesting, mainly by facilitating the use of machinery in these operations, but monocultures can also increase the risk of diseases or pest outbreaks. This practice is particularly common in industrialized nations worldwide. Diversity can be added both in time, as with a crop rotation or sequence, or in space, with a polyculture or intercropping.

The following outline is provided as an overview of and topical guide to sustainable agriculture:

<span class="mw-page-title-main">Wildlife garden</span>

A wildlife garden is an environment created with the purpose to serve as a sustainable haven for surrounding wildlife. Wildlife gardens contain a variety of habitats that cater to native and local plants, birds, amphibians, reptiles, insects, mammals and so on, and are meant to sustain locally native flora and fauna. Other names this type of gardening goes by can vary, prominent ones being habitat, ecology, and conservation gardening.

<span class="mw-page-title-main">Pollination</span> Biological process occurring in plants

Pollination is the transfer of pollen from an anther of a plant to the stigma of a plant, later enabling fertilisation and the production of seeds, most often by an animal or by wind. Pollinating agents can be animals such as insects, for example beetles or butterflies; birds, and bats; water; wind; and even plants themselves. Pollinating animals travel from plant to plant carrying pollen on their bodies in a vital interaction that allows the transfer of genetic material critical to the reproductive system of most flowering plants. When self-pollination occurs within a closed flower. Pollination often occurs within a species. When pollination occurs between species, it can produce hybrid offspring in nature and in plant breeding work.

<span class="mw-page-title-main">Urban ecology</span> Scientific study of living organisms

Urban ecology is the scientific study of the relation of living organisms with each other and their surroundings in an urban environment. An urban environment refers to environments dominated by high-density residential and commercial buildings, paved surfaces, and other urban-related factors that create a unique landscape. The goal of urban ecology is to achieve a balance between human culture and the natural environment.

<span class="mw-page-title-main">Beetle bank</span> Biological pest control

In agriculture and horticulture, a beetle bank is a form of biological pest control. It is a strip, preferably raised, planted with grasses and/or perennial plants, within a crop field or a garden, that fosters and provides habitat for beneficial insects, birds, and other fauna that prey on pests.

<span class="mw-page-title-main">Intercropping</span> Multiple cropping practice involving growing two or more crops in proximity

Intercropping is a multiple cropping practice that involves the cultivation of two or more crops simultaneously on the same field, a form of polyculture. The most common goal of intercropping is to produce a greater yield on a given piece of land by making use of resources or ecological processes that would otherwise not be utilized by a single crop.

<span class="mw-page-title-main">Beneficial insect</span>

Beneficial insects are any of a number of species of insects that perform valued services like pollination and pest control. The concept of beneficial is subjective and only arises in light of desired outcomes from a human perspective. In agriculture, where the goal is to raise selected crops, insects that hinder the production process are classified as pests, while insects that assist production are considered beneficial. In horticulture and gardening, beneficial insects are often considered those that contribute to pest control and native habitat integration.

<span class="mw-page-title-main">Polyculture</span> Growing multiple crops together in agriculture

In agriculture, polyculture is the practice of growing more than one crop species together in the same place at the same time, in contrast to monoculture, which had become the dominant approach in developed countries by 1950. Traditional examples include the intercropping of the three sisters, namely maize, beans, and squashes, by indigenous peoples of Central and North America, the rice-fish systems of Asia, and the complex mixed cropping systems of Nigeria.

<span class="mw-page-title-main">Agricultural biodiversity</span> Agricultural concept

Agricultural biodiversity or agrobiodiversity is a subset of general biodiversity pertaining to agriculture. It can be defined as "the variety and variability of animals, plants and micro-organisms at the genetic, species and ecosystem levels that sustain the ecosystem structures, functions and processes in and around production systems, and that provide food and non-food agricultural products.” It is managed by farmers, pastoralists, fishers and forest dwellers, agrobiodiversity provides stability, adaptability and resilience and constitutes a key element of the livelihood strategies of rural communities throughout the world. Agrobiodiversity is central to sustainable food systems and sustainable diets. The use of agricultural biodiversity can contribute to food security, nutrition security, and livelihood security, and it is critical for climate adaptation and climate mitigation.

<span class="mw-page-title-main">Reconciliation ecology</span> Study of maintaining biodiversity in human-dominated ecosystems

Reconciliation ecology is the branch of ecology which studies ways to encourage biodiversity in the human-dominated ecosystems of the anthropocene era. Michael Rosenzweig first articulated the concept in his book Win-Win Ecology, based on the theory that there is not enough area for all of earth's biodiversity to be saved within designated nature preserves. Therefore, humans should increase biodiversity in human-dominated landscapes. By managing for biodiversity in ways that do not decrease human utility of the system, it is a "win-win" situation for both human use and native biodiversity. The science is based in the ecological foundation of human land-use trends and species-area relationships. It has many benefits beyond protection of biodiversity, and there are numerous examples of it around the globe. Aspects of reconciliation ecology can already be found in management legislation, but there are challenges in both public acceptance and ecological success of reconciliation attempts.

<span class="mw-page-title-main">Prairie restoration</span> Conservation efforts focused on prairie lands

Prairie restoration is a conservation effort to restore prairie lands that were destroyed due to industrial, agricultural, commercial, or residential development. The primary aim is to return areas and ecosystems to their previous state before their depletion.

<span class="mw-page-title-main">Natural landscaping</span>

Natural landscaping, also called native gardening, is the use of native plants including trees, shrubs, groundcover, and grasses which are local to the geographic area of the garden.

<span class="mw-page-title-main">Insect biodiversity</span>

Insect biodiversity accounts for a large proportion of all biodiversity on the planet—over half of the estimated 1.5 million organism species described are classified as insects.

The effect of organic farming has been a subject of interest for researchers. Theory suggests that organic farming practices, which exclude the use of most synthetic pesticides and fertilizers, may be beneficial for biodiversity. This is generally shown to be true for soils scaled to the area of cultivated land, where species abundance is, on average, 30% richer than that of conventional farms. However, for crop yield-scaled land the effect of organic farming on biodiversity is highly debated due to the significantly lower yields compared to conventional farms.

<span class="mw-page-title-main">Biodiversity in agriculture</span> Increasing biodiversity in agriculture

Biodiversity in agriculture is the measure of biodiversity found on agricultural land. Biodiversity is the total diversity of species present in an area at all levels of biological organization. It is characterized by heterogeneous habitats that support the diverse ecological structure. In agricultural areas, biodiversity decreases as varying landscapes are lost and native plants are replaced with cultivated crops. Increasing biodiversity in agriculture can increase the sustainability of farms through the restoration of ecosystem services that aid in regulating agricultural lands. Biodiversity in agriculture can be increased through the process of agroecological restoration, as farm biodiversity is an aspect of agroecology.

Crop diversity or crop biodiversity is the variety and variability of crops, plants used in agriculture, including their genetic and phenotypic characteristics. It is a subset of a specific element of agricultural biodiversity. Over the past 50 years, there has been a major decline in two components of crop diversity; genetic diversity within each crop and the number of species commonly grown.

<span class="mw-page-title-main">Tritrophic interactions in plant defense</span> Ecological interactions

Tritrophic interactions in plant defense against herbivory describe the ecological impacts of three trophic levels on each other: the plant, the herbivore, and its natural enemies. They may also be called multitrophic interactions when further trophic levels, such as soil microbes, endophytes, or hyperparasitoids are considered. Tritrophic interactions join pollination and seed dispersal as vital biological functions which plants perform via cooperation with animals.

<span class="mw-page-title-main">Decline in insect populations</span> Ecological trend recorded since the late 20th century

Insects are the most numerous and widespread class in the animal kingdom, accounting for up to 90% of all animal species. In the 2010s, reports emerged about the widespread decline in insect populations across multiple insect orders. The reported severity shocked many observers, even though there had been earlier findings of pollinator decline. There has also been anecdotal reports of greater insect abundance earlier in the 20th century. Many car drivers know this anecdotal evidence through the windscreen phenomenon, for example. Causes for the decline in insect population are similar to those driving other biodiversity loss. They include habitat destruction, such as intensive agriculture, the use of pesticides, introduced species, and – to a lesser degree and only for some regions – the effects of climate change. An additional cause that may be specific to insects is light pollution.

<span class="mw-page-title-main">Pollinator garden</span> Type of garden

A pollinator garden is a type of garden designed with the intent of growing specific nectar and pollen-producing plants, in a way that attracts pollinating insects known as pollinators. Pollinators aid in the production of one out of every three bites of food consumed by humans, and pollinator gardens are a way to offer support for these species. In order for a garden to be considered a pollinator garden, it should provide various nectar producing flowers, shelter or shelter-providing plants for pollinators, and avoid the use of pesticides.

References

  1. Ganser, Dominik; Mayr, Barbara; Albrecht, Matthias; Knop, Eva (December 2018), "Wildflower strips enhance pollination in adjacent strawberry crops at the small scale", Ecology and Evolution, 8 (23): 11775–11784, doi:10.1002/ece3.4631, ISSN   2045-7758, PMC   6303775 , PMID   30598775
  2. Grass, Ingo; Albrecht, Jörg; Farwig, Nina; Jauker, Frank (1 December 2021), "Plant traits and landscape simplification drive intraspecific trait diversity of Bombus terrestris in wildflower plantings", Basic and Applied Ecology, 57: 91–101, doi: 10.1016/j.baae.2021.10.002 , ISSN   1439-1791, S2CID   240241322
  3. Haaland, Christine; Naisbit, Russell E.; Bersier, Louis-Félix (2011), "Sown wildflower strips for insect conservation: a review" (PDF), Insect Conservation and Diversity, 4 (1): 60–80, doi:10.1111/j.1752-4598.2010.00098.x, ISSN   1752-4598, S2CID   55210072
  4. Schmidt, Annika; Fartmann, Thomas; Kiehl, Kathrin; Kirmer, Anita; Tischew, Sabine (1 February 2022), "Effects of perennial wildflower strips and landscape structure on birds in intensively farmed agricultural landscapes", Basic and Applied Ecology, 58: 15–25, doi: 10.1016/j.baae.2021.10.005 , ISSN   1439-1791, S2CID   240256023
  5. 1 2 3 4 5 6 Pfiffner L, Wyss E. 2004. Use of sown wildflower strips to enhance natural enemies of agricultural pests. In: Gurr GM, Wratten SD, Altieri MA. Ecological Engineering for Pest management: Advances in Habitat Manipulation for Arthropods, pp.165-186. CSIRO Publishing.
  6. 1 2 Keller M. 1999. The importance of seed source in programmes to increase species diversity in arable systems. Doctoral Thesis, University of Zurich.
  7. UK Centre for Ecology and Hydrology. Infield wildflower strips. Blog available at: (Accessed 26/06/2022).
  8. Sandau N, Naisbit RE, Fabian Y, Bruggisser OT, Kehrli P, Aebi A, Rohr RP, Bersier L-F. 2019. Understanding negative biodiversity-ecosystem functioning relationships in semi-natural wildflower strips. Oecologia 189(1): 185 – 197.
  9. Marshall EJP, Moonen AC. 2002. Field margins in northern Europe: their functions interactions with agriculture. Agriculture, Ecosystems and Environment 89: 5 – 21.
  10. 1 2 Frank T, Reichhart B. 2004. Staphylinidae and Carabidae overwintering in wheat and sown wildflower areas of different age. Bulletin of Entomological Research 94: 209 – 217.
  11. Sotherton NW. 1985. The distribution and abundance of predatory Coleoptera overwintering in field boundaries. Annals of Applied Biology 106: 17–21.
  12. Feltham H, Park K, Minderman J, Goulson D. 2015. Experimental evidence that wildflower strips increase pollinator visits to crops. Ecology and Evolution 5(16): 3523 – 3530.
  13. 1 2 3 Scheper J et al. 2015. Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European Countries. Journal of Applied Ecology 52: 1165 – 1175.
  14. Pywell, RF, Heard MS, Bradbury RB, Hinsley S, Nowakowski M, Walker KJ, Bullock JM. 2012. Wildlife-friendly farming benefits rare birds, bees, and plants. Biology Letters 8: 772 – 775.
  15. Balzan MV, Bocci G, Moonen A-C. 2014. Augmenting flower trait diversity in wildflower strips to optimise the conservation of arthropod functional groups for multiple agroecosystem services. Journal of Insect Conservation 18(4): 713 – 728.
  16. Campbell AJ, Biesmeijer JC, Varma V, Wäckers FL. 2012. Realising multiple ecosystem services based on the response of three beneficial insect groups to floral traits and trait diversity. Basic Applied Ecology 13: 363–370
  17. Barone M, Frank T. 2003. Habitat age increases reproduction and nutritional condition in a generalist predator. Oecologia 135: 78 – 83.
  18. Haaland C, Bersier LF. 2011. What can sown wildflower strips contribute to butterfly conservation? An example from a Swiss lowland agricultural landscape. Journal of Insect Conservation 15(1-2): 301 - 309