Agroecosystem

Last updated
Agroecosystem in Croton-on-Hudson, New York in Westchester County. Intercropped tomatoes, basil, peppers and eggplants. Julieagroecosystem.jpg
Agroecosystem in Croton-on-Hudson, New York in Westchester County. Intercropped tomatoes, basil, peppers and eggplants.

Agroecosystems are the ecosystems supporting the food production systems in farms and gardens. As the name implies, at the core of an agroecosystem lies the human activity of agriculture. As such they are the basic unit of study in Agroecology, and Regenerative Agriculture using ecological approaches.

Contents

Like other ecosystems, agroecosystems form partially closed systems in which animals, plants, microbes, and other living organisms and their environment are interdependent and regularly interact. They are somewhat arbitrarily defined as a spatially and functionally coherent unit of agricultural activity. [1]

An agroecosystem can be seen as not restricted to the immediate site of agricultural activity (e.g. the farm). That is, it includes the region that is impacted by this activity, usually by changes to the complexity of species assemblages and energy flows, as well as to the net nutrient balance. Agroecosystems, particularly those managed intensively, are characterized as having simpler species composition, energy and nutrient flows than "natural" ecosystems. [2] Likewise, agroecosystems are often associated with elevated nutrient input, much of which exits the farm leading to eutrophication of connected ecosystems not directly engaged in agriculture. [3]

Utilization

Forest gardens are probably the world's oldest and most resilient agroecosystem. [4] Forest gardens originated in prehistoric times along jungle-clad river banks and in the wet foothills of monsoon regions. In the gradual process of a family improving their immediate environment, useful tree and vine species were identified, protected and improved whilst undesirable species were eliminated. Eventually superior foreign species were selected and incorporated into the family's garden. [5]

Some major organizations are hailing farming within agroecosystems as the way forward for mainstream agriculture. Current farming methods have resulted in over-stretched water resources, high levels of erosion and reduced soil fertility. According to a report by the International Water Management Institute and the United Nations Environment Programme, [6] there is not enough water to continue farming using current practices; therefore how critical water, land, and ecosystem resources are used to boost crop yields must be reconsidered. The report suggested assigning value to ecosystems, recognizing environmental and livelihood tradeoffs, and balancing the rights of a variety of users and interests, as well addressing inequities that sometimes result when such measures are adopted, such as the reallocation of water from poor to rich, the clearing of land to make way for more productive farmland, or the preservation of a wetland system that limits fishing rights. [7]

One of the major efforts of disciplines such as agroecology is to promote management styles that blur the distinction between agroecosystems and "natural" ecosystems, both by decreasing the impact of agriculture (increasing the biological and trophic complexity of the agricultural system as well as decreasing the nutrient inputs/outflow) and by increasing awareness that "downstream" effects extend agroecosystems beyond the boundaries of the farm (e.g. the Corn Belt agroecosystem includes the hypoxic zone in the Gulf of Mexico). In the first case, polyculture or buffer strips for wildlife habitat can restore some complexity to a cropping system, while organic farming can reduce nutrient inputs. Efforts of the second type are most common at the watershed scale. An example is the National Association of Conservation Districts' Lake Mendota Watershed Project, which seeks to reduce runoff from the agricultural lands feeding into the lake with the aim of reducing algal blooms. [8]

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Crop rotation</span> Agricultural practice of changing crops

Crop rotation is the practice of growing a series of different types of crops in the same area across a sequence of growing seasons. This practice reduces the reliance of crops on one set of nutrients, pest and weed pressure, along with the probability of developing resistant pests and weeds.

The following outline is provided as an overview of and topical guide to agriculture:

<span class="mw-page-title-main">Intensive farming</span> Branch of agricultire

Intensive agriculture, also known as intensive farming, conventional, or industrial agriculture, is a type of agriculture, both of crop plants and of animals, with higher levels of input and output per unit of agricultural land area. It is characterized by a low fallow ratio, higher use of inputs such as capital, labour, agrochemicals and water, and higher crop yields per unit land area.

<span class="mw-page-title-main">Forest gardening</span> Agroforestry food production system modeled on woodland ecosystems

Forest gardening is a low-maintenance, sustainable, plant-based food production and agroforestry system based on woodland ecosystems, incorporating fruit and nut trees, shrubs, herbs, vines and perennial vegetables which have yields directly useful to humans. Making use of companion planting, these can be intermixed to grow in a succession of layers to build a woodland habitat. Forest gardening is a prehistoric method of securing food in tropical areas. In the 1980s, Robert Hart coined the term "forest gardening" after adapting the principles and applying them to temperate climates.

The following outline is provided as an overview of and topical guide to sustainable agriculture:

<span class="mw-page-title-main">Sustainable agriculture</span> Farming approach that balances environmental, economic and social factors in the long term

Sustainable agriculture is farming in sustainable ways meeting society's present food and textile needs, without compromising the ability for current or future generations to meet their needs. It can be based on an understanding of ecosystem services. There are many methods to increase the sustainability of agriculture. When developing agriculture within sustainable food systems, it is important to develop flexible business process and farming practices. Agriculture has an enormous environmental footprint, playing a significant role in causing climate change, water scarcity, water pollution, land degradation, deforestation and other processes; it is simultaneously causing environmental changes and being impacted by these changes. Sustainable agriculture consists of environment friendly methods of farming that allow the production of crops or livestock without damage to human or natural systems. It involves preventing adverse effects to soil, water, biodiversity, surrounding or downstream resources—as well as to those working or living on the farm or in neighboring areas. Elements of sustainable agriculture can include permaculture, agroforestry, mixed farming, multiple cropping, and crop rotation.

Agroecology is an academic discipline that studies ecological processes applied to agricultural production systems. Bringing ecological principles to bear can suggest new management approaches in agroecosystems. The term can refer to a science, a movement, or an agricultural practice. Agroecologists study a variety of agroecosystems. The field of agroecology is not associated with any one particular method of farming, whether it be organic, regenerative, integrated, or industrial, intensive or extensive, although some use the name specifically for alternative agriculture.

<span class="mw-page-title-main">Polyculture</span> Growing multiple crops together in agriculture

In agriculture, polyculture is the practice of growing more than one crop species in the same space, at the same time. In doing this, polyculture attempts to mimic the diversity of natural ecosystems. Polyculture is the opposite of monoculture, in which only one plant or animal species is cultivated together. Polyculture can improve control of some pests, weeds, and diseases while reducing the need for pesticides. Intercrops of legumes with non-legumes can increase yields on low-nitrogen soils due to biological nitrogen fixation. However, polyculture can reduce crop yields due to competition between the mixed species for light, water, or nutrients. It complicates management as species have different growth rates, days to maturity, and harvest requirements: monoculture is more amenable to mechanisation. For these reasons, many farmers in large-scale agriculture continue to rely on monoculture and use crop rotation to add diversity to the system.

<span class="mw-page-title-main">Agricultural biodiversity</span>

Agricultural biodiversity or agrobiodiversity is a subset of general biodiversity pertaining to agriculture. It can be defined as "the variety and variability of animals, plants and micro-organisms at the genetic, species and ecosystem levels that sustain the ecosystem structures, functions and processes in and around production systems, and that provide food and non-food agricultural products.” It is managed by farmers, pastoralists, fishers and forest dwellers, agrobiodiversity provides stability, adaptability and resilience and constitutes a key element of the livelihood strategies of rural communities throughout the world. Agrobiodiversity is central to sustainable food systems and sustainable diets. The use of agricultural biodiversity can contribute to food security, nutrition security, and livelihood security, and it is critical for climate adaptation and climate mitigation.

<span class="mw-page-title-main">Agroforestry</span> Land use management system

Agroforestry is a land use management system in which combinations of trees or shrubs are grown around or among crops or pastureland. Agroforestry combines agricultural and forestry technologies to create more diverse, productive, profitable, healthy, and sustainable land-use systems. There are many benefits to agroforestry such as increasing farm profitability. In addition, agroforestry helps to preserve and protect natural resources such as controlling soil erosions, creating habitat for the wildlife, and managing animal waste. Benefits also include increased biodiversity, improved soil structure and health, reduced erosion, and carbon sequestration.

<span class="mw-page-title-main">Integrated multi-trophic aquaculture</span> Type of aquaculture

Integrated multi-trophic aquaculture (IMTA) provides the byproducts, including waste, from one aquatic species as inputs for another. Farmers combine fed aquaculture with inorganic extractive and organic extractive aquaculture to create balanced systems for environment remediation (biomitigation), economic stability and social acceptability.

<span class="mw-page-title-main">Shade-grown coffee</span>

Shade-grown coffee is a form of the crop produced from coffee plants grown under a canopy of trees. A canopy of assorted types of shade trees is created to cultivate shade-grown coffee. Because it incorporates principles of natural ecology to promote natural ecological relationships, shade-grown coffee can be considered an offshoot of agricultural permaculture or agroforestry. The resulting coffee can be marketed as "shade-grown".

<span class="mw-page-title-main">Agroecology in Latin America</span> Agroecological practices in Latin America

Agroecology is an applied science that involves the adaptation of ecological concepts to the structure, performance, and management of sustainable agroecosystems. In Latin America, agroecological practices have a long history and vary between regions but share three main approaches or levels: plot scale, farm scale, and food system scale. Agroecology in Latin American countries can be used as a tool for providing both ecological, economic, and social benefits to the communities that practice it, as well as maintaining high biodiversity and providing refuges for flora and fauna in these countries. Due to its broad scope and versatility, it is often referred to as "a science, a movement, a practice."

The environmental impact of agriculture is the effect that different farming practices have on the ecosystems around them, and how those effects can be traced back to those practices. The environmental impact of agriculture varies widely based on practices employed by farmers and by the scale of practice. Farming communities that try to reduce environmental impacts through modifying their practices will adopt sustainable agriculture practices. The negative impact of agriculture is an old issue that remains a concern even as experts design innovative means to reduce destruction and enhance eco-efficiency. Though some pastoralism is environmentally positive, modern animal agriculture practices tend to be more environmentally destructive than agricultural practices focused on fruits, vegetables and other biomass. The emissions of ammonia from cattle waste continue to raise concerns over environmental pollution.

Miguel Altieri is a Chilean born agronomist and entomologist. He is a Professor of Agroecology at the University of California, Berkeley in the Department of Environmental Science, Policy and Management.

Soil management is the application of operations, practices, and treatments to protect soil and enhance its performance. It includes soil conservation, soil amendment, and optimal soil health. In agriculture, some amount of soil management is needed both in nonorganic and organic types to prevent agricultural land from becoming poorly productive over decades. Organic farming in particular emphasizes optimal soil management, because it uses soil health as the exclusive or nearly exclusive source of its fertilization and pest control.

<span class="mw-page-title-main">Natural farming</span> Sustainable farming approach

Natural farming, also referred to as "the Fukuoka Method", "the natural way of farming", or "do-nothing farming", is an ecological farming approach established by Masanobu Fukuoka (1913–2008). Fukuoka, a Japanese farmer and philosopher, introduced the term in his 1975 book The One-Straw Revolution. The title refers not to lack of effort, but to the avoidance of manufactured inputs and equipment. Natural farming is related to fertility farming, organic farming, sustainable agriculture, agroecology, agroforestry, ecoagriculture and permaculture, but should be distinguished from biodynamic agriculture.

<span class="mw-page-title-main">Indian Institute of Soil Science</span>

The Indian Institute of Soil Science is an autonomous institute for higher learning, established under the umbrella of Indian Council of Agricultural Research (ICAR) by the Ministry of Agriculture, Government of India for advanced research in the field of soil sciences.

<span class="mw-page-title-main">Regenerative agriculture</span> Conservation and rehabilitation approach to food and farming systems

Regenerative agriculture is a conservation and rehabilitation approach to food and farming systems. It focuses on topsoil regeneration, increasing biodiversity, improving the water cycle, enhancing ecosystem services, supporting biosequestration, increasing resilience to climate change, and strengthening the health and vitality of farm soil.

<span class="mw-page-title-main">Ivette Perfecto</span> Puerto Rican ecologist

Ivette Perfecto is an ecologist and professor at the University of Michigan. Her work focuses on complex ecosystem dynamics and the application of ecological theories to agricultural systems.

References

  1. Agro-ecosystem Health Project. 1996. Agroecosystem health. University of Guelph, Guelph, Canada.
  2. Elske van de Fliert and Ann R. Braun. 1999. Farmer Field School for Integrated Crop Management of Sweetpotato. Field guides and Technical Manual. Bogor, Indonesia: International Potato Center. ISBN   92-9060-216-3. "CIP-ESEAP Publication". Archived from the original on 2009-01-23. Retrieved 2008-12-09.
  3. Agroecosystem Management for Improved Human Health: Applying principles of integrated pest management to people. D. G. Peden. Published in New Directions in Animal Production Systems. Proceedings of the Annual Meeting of the Canadian Society of Animal Science, July 5–8, 1998, Vancouver, British Columbia, Canada. Edited by R. Blair, R. Rajamahendran, L.S. Stephens, M.Y. Yang. "Agroecosystem Management for Improved Human Health: Applying principles of integrated pest management to people: International Development Research Centre". Archived from the original on 2008-05-01. Retrieved 2008-12-09.
  4. Douglas John McConnell (2003). The Forest Farms of Kandy: And Other Gardens of Complete Design. Ashgate. p. 1. ISBN   9780754609582.
  5. Douglas John McConnell (1992). The forest-garden farms of Kandy, Sri Lanka. Food & Agriculture Org. p. 1. ISBN   9789251028988.
  6. Boelee, E. (Ed) Ecosystems for water and food security Archived 2013-05-23 at the Wayback Machine , 2011, IWMI, UNEP
  7. Molden, D., Opinion: The Water Deficit, The Scientist, 23 August 2011
  8. TMDL Case Study: Wisconsin "TMDL Case Study: Wisconsin - National Association of Conservation Districts". Archived from the original on 2008-11-20. Retrieved 2008-12-09.