William French Anderson

Last updated
William French Anderson
Dr. W. French Anderson at Gene therapy press conference (cropped).jpg
Dr. Anderson in 1990
Born (1936-12-31) December 31, 1936 (age 87)
Education Harvard College
Harvard Medical School
Trinity College, Cambridge University
Known forContributions to gene therapy
Scientific career
Fields Genetics
molecular biology
Criminal statusParoled
Conviction(s) Lewd acts upon a child under the age of 14 (three counts)
Continuous sexual abuse (one count)
Criminal penalty14 years imprisonment

William French Anderson (born December 31, 1936) is an American physician, geneticist and molecular biologist. He is known as the "father of gene therapy". He graduated from Harvard College in 1958, Trinity College, Cambridge University (England) in 1960, and from Harvard Medical School in 1963. In 1990 he was the first person to succeed in carrying out gene therapy by treating a 4-year-old girl suffering from severe combined immunodeficiency (a disorder called "bubble boy disease"). [1] [2] [3] In 2006, he was convicted of sexual abuse of a minor and in 2007 was sentenced to 14 years in prison. He was paroled on May 17, 2018, for good behavior.

Contents

Early life and education

Anderson was born in Tulsa, Oklahoma to his two parents. His father was a civil engineer, his mother was a journalist and writer, and he had two older sisters. His was a very happy childhood. [1] He was recognized in high school for his scholarship, interest in science, and prowess on the track team. He won an Honorable Mention in the Westinghouse Science Talent Search for a project demonstrating how Roman numerals could be used in arithmetical procedures. He graduated in 1954 from Tulsa Central High School.

Anderson went to Harvard College, where he published several papers as an undergraduate: his high school work on Roman numerals in classical philology in 1956, [4] arithmetical operations using Minoan linear B numerals in the American Journal of Archaeology in 1958, [5] a physical chemistry research paper in the Journal of the American Chemical Society in 1958, [6] and a research study on the effects of irradiation on DNA in the Journal of Cellular and Comparative Physiology in 1961. [7] In its March 19, 1956 issue, Time magazine called Anderson a "Harvard Prodigy" for his research work on ancient numerical systems. [8] He graduated from Harvard in 1958, and spent two years at Trinity College, Cambridge University (England), where he obtained an M.A., worked in the laboratory of Francis Crick, won a Full Blue on the track team, and met, and in 1961 married Kathy, who was a fellow medical student at Cambridge. [1]

He returned to Harvard, to the medical school, and was joined there by Kathy a year later. Anderson graduated in 1963 and spent a year internship in pediatric medicine at Children's Hospital in Boston. His wife graduated in 1964 and went on to have a very distinguished career in pediatric surgery. Anderson, after his intern year, spent a year conducting bacterial genetics research at Harvard Medical School and published his work in the Proceedings of the National Academy of Sciences USA in 1965. [9]

Career

Anderson then spent two years, 1965–1967, under the tutelage of Marshall Nirenberg in a laboratory at the National Institutes of Health, where he helped finish the decipherment of the genetic code. Nirenberg rewarded his efforts by allowing him to make the first public presentation of the final genetic code before an audience of approximately 2,000 scientists at the April 1966 meeting of FASEB in Atlantic City. [1] [10] After his successful post-doctoral fellowship with Nirenberg, Anderson was given his own laboratory in the NIH in July 1967. He made clear from the beginning that his goal was to develop a way to give a normal gene to children with a genetic defect in order to cure the genetic disease. [1] He, therefore, decided to begin by studying human disease on the molecular level. Over his career, he has published more than 400 research papers, 39 editorials, and 5 books, and has received numerous awards and honors including 5 honorary doctorate degrees.

Discovery of eukaryotic protein synthesis initiation factors

As Anderson began his own career, protein synthesis in bacteria was at the forefront of molecular biology research. He set out to discover protein synthesis initiation factors in mammals. His first major accomplishment, in 1970, was the isolation from rabbit reticulocytes (immature red blood cells) of several factors that initiated hemoglobin synthesis on reticulocyte ribosomes. [11] It was later learned that these factors also initiated protein synthesis in essentially all eukaryotic systems.

Development of a cell-free protein synthesizing system

In order to isolate the predicted molecule "messenger RNA", a cell-free protein synthesizing system of mRNA-free ribosomes was needed. Initially, a cell-free tRNA-dependent protein synthesizing system was developed from rabbit reticulocytes ribosomes, using the endogenous mRNA on the ribosomes. [12] An analogous system was developed with human reticulocyte ribosomes. [13]

Isolation of human messenger RNA

A procedure was developed for stripping the putative mRNA from the ribosomes. This ribosomal wash from rabbit reticulocyte ribosomes was incubated in a cell-free system and rabbit hemoglobin was produced. The procedure for stripping endogenous mRNA from rabbit reticulocyte ribosomes was used on human reticulocyte ribosomes to obtain human globin mRNA. [14]

Synthesis of normal and mutant globin proteins using human globin mRNA

Stripped rabbit reticulocyte ribosomes were programmed with mRNA isolated from thalassemia, sickle cell anemia, or normal human reticulocytes. The rabbit ribosome cell-free system was able to produce normal human globin from normal human mRNA, sickle cell globin from sickle cell mRNA, and the abnormal alpha/beta globin chain abnormality of thalassemia from thalassemia mRNA. [15] [16]

Microinjection of globin DNA into mammalian cell nuclei

As a first approach for developing a human gene therapy procedure, standard microinjection techniques were modified to permit the injection of DNA plasmids into the nucleus of mammalian cells. [17] Human globin genes were microinjected into mouse fibroblasts and into mouse oocytes and shown to express human globin mRNA. [18] [19]

Development of retroviral gene therapy vectors

Microinjecting a few non-stem cells was clearly not an efficient procedure for a clinical protocol. In 1984, Anderson published a major review in Science in which he analyzed the "Prospects for Human Gene Therapy" [20] and concluded that the most promising approach was to use retroviral vectors as a delivery vehicle. He immediately established a close, long-term collaboration with one of the top retroviral vector scientists: Eli Gilboa, then at Princeton. Together they developed vectors that could efficiently carry a gene package into mouse or human cells in culture. [21] [22]

The most efficient vector, N2, carrying a neomycin resistance gene, was used to transduce mouse bone marrow cells. The N2-transduced cells were injected into lethally irradiated mice where they repopulated the marrow. The presence and expression of the N2 vector could be detected in the repopulated mouse bone marrow cells by testing for the resistance of the marrow cells to the toxic antibiotic neomycin. [23]

Once the procedure was working successfully in mice, successful studies were done in non human primates. [24] [25] In addition, extensive safety studies were done in the vector transduced animals. [26]

Successful gene therapy of a human patient

Attempting to perform gene therapy by inserting recombinant DNA into a human being was extremely controversial after an illegal attempt was made in 1980. Anderson, together with bioethicist John Fletcher, set the ethical standard for this type of clinical protocol in his 1980 article in The New England Journal of Medicine entitled: "Gene Therapy In Human Beings: When Is It Ethical To Begin?" [27] An extensive regulatory process was established during the late 1980s, including the creation of the Human Gene Therapy Subcommittee as a first round of regulatory oversight. Only after approval by that formal public governmental review did the gene therapy clinical protocol move on for review by the Recombinant DNA Advisory Committee (RAC), the FDA, and other ethics/regulatory committees. The media followed every step closely.

Anderson teamed with Michael Blaese, a prominent immunologist in the National Cancer Institute (NCI), and Steven Rosenberg, a prominent cancer surgeon and immunotherapy advocate, also in the NCI. The initial protocol was a safety study where only the N2 vector, previously shown to be safe when used in non-human primates, was administered to cancer patients, on Rosenberg's NCI clinical cancer service, who volunteered for the study. A full "gene therapy" regulatory review was carried out. The clinical protocol began on May 22, 1989, and included 10 patients. The procedure was shown to be safe. [28] Rosenberg went on to develop gene therapy/immunotherapy clinical protocols for cancer. [29]

Anderson and Blaese carried out the first gene therapy protocol, on a 4-year-old girl, named Ashanthi DeSilva, who was critically ill with adenosine deaminase deficiency severe combined immunodeficiency disease (ADA SCID). Preliminary studies included development of a retroviral vector containing the ADA gene together with additional safety features, [30] creation of ADA deficient human T cell lines used for testing ADA vectors, [31] and creation of a biotechnology company, Genetic Therapy Inc., to manufacture the ADA vector, called LASN, under strict GMP FDA requirements. Anderson also created, and became editor-in-chief of, a new journal, Human Gene Therapy, in 1990. This new journal published not only original scientific research papers but also articles on ethical and regulatory issues relating to gene therapy.

Ashanthi received her first infusion of cells on September 14, 1990, with no complications. [32] [33] She received 10 more infusions over the next 2 years. Her immune evaluation studies became normal and she became healthy with no major infections. [34] [35] A thorough immune status follow-up was done after 12 years: she remained healthy with 20% of her lymphocytes still carrying an active retroviral ADA gene – a sufficient percentage to ensure immunologic protection. [36] She is now 33 years old, married, and works as a journalist and writer.

Late career research projects

In 1992, Anderson followed his wife to Los Angeles, where she accepted the position of chief of surgery at Los Angeles Children's Hospital. He became professor of biochemistry and pediatrics at the University of Southern California (USC). Anderson maintained his intense interest in gene therapy and was able to develop a retroviral gene therapy vector that could target the collagen matrix surrounding cancer nodules. [37] He wrote a number of reviews of gene therapy in both the scientific literature [38] [39] [40] and in the popular literature. [41] [42]

Anticipating the value of lab-on-a-chip technology for the molecular analysis of individual cells, Anderson joined forces with Stephen Quake, professor of applied physics at California Institute of Technology. Quake was developing lab-on-a-chip technology using soft polymers. Anderson became a visiting associate in applied physics at Caltech from 2001 to 2006, while maintaining his USC positions, and succeeded in developing an improved microfluidic valve that was patented and has become the core of soft polymer lab-on-a-chip devices. [43] [44]

His final project before he was arrested was the discovery and identification of a factor in the serum of irradiated animals that could rescue lethally irradiated animals even 24 hours after the irradiation. [45] Purification from the serum demonstrated that the factor was Interleukin 12. During the 12 years that Anderson has been in prison, IL-12 has been shown to potentially be a very important adjuvant drug in cancer treatment.

Other activities

Sports medicine

Anderson has been a ring doctor and tournament doctor in a large number of competitions. In 1981, he became the team physician for the National Taekwondo Team, and was also the team physician at the 1988 Olympics in Seoul Korea when taekwondo became an Olympic sport. [1] He has written several sports medicine articles on prevention and treatment of taekwondo injuries. [46] [47] [48] In addition, he was chairman of the medical committee of the World Taekwondo Federation from 1985 to 1988.

Forensic medicine

Anderson is best known in forensic medicine for his forensic analysis of the famous April 11, 1986 FBI firefight which, at the time, was the deadliest firefight in the history of the FBI. His analysis, privately printed in 1996, was accepted by the FBI as the official version, and every new FBI agent was given a copy of his report.[ citation needed ] After 10 years, the FBI allowed Anderson to make the report public, and it was published with a new foreword by Paladin Press in 2006. [49]

Anderson also published a forensic analysis of the Warren Earp killing, [50] as well as a study of the bruises beneath soft body armor when bullets of various calibers strike a person wearing the armor. [51]

Sexual abuse conviction

Anderson was arrested on July 30, 2004, on allegations of sexual abuse of a minor girl. [52] He was convicted and jailed on July 19, 2006, of three counts of lewd acts upon a child under the age of 14, and one count of continuous sexual abuse. [53] On February 2, 2007, he was sentenced to 14 years in prison and ordered to pay $68,000 in restitution, fines, and fees. [54] Scientific colleagues regarded his sentence as a 'loss to science'. [55] The victim was the daughter of his senior lab scientist and business partner from China. The jury was played a sting meeting recording between Anderson and the victim in which Anderson is heard to say a number of damaging statements. [56] His case was black balled and no courts would hear any appeals. He served his entire sentence, which was shortened based on good behavior and mentoring other prisoners. He was released from prison on May 17, 2018, and served a five-year parole. Within a year of his arrest, the bulk of the gene therapy research was republished in Chinese medical journals and gene therapy medicines were available online within China. Many suspect this is an early example of US intellectual property theft by the Chinese and in this case, his business partner.

Published books

Development of Iron Chelators for Clinical Use. Anderson, W.F. and Hiller, H.C., eds., DHEW Publ. No. (NIH) 76-994, 1976.

Fourth Cooley's Anemia Symposium. Anderson, W.F.; Bank, A.; Zaino, E.C., eds., Ann. NY Acad. Sci., Vol. 344, 1980.

Development of Iron Chelators for Clinical Use: Proceedings of the Second Symposium. Martell, A.E.; Anderson, W.F.; Badman, D., eds., Elsevier-North Holland, New York, 1981.

Fifth Cooley's Anemia Symposium. Bank, A.; Anderson, W.F.; Zaino, E.C., eds., Ann. NY Acad. Sci., Vol. 445, 1985.

Forensic Analysis of the April 11, 1986, FBI Firefight. Anderson, W.F., Paladin Press, 2006. ISBN   1581604904

Awards and honors

1954-1964Harvard National Scholarship
1957-1958Francis H. Burr Scholar of Harvard University
1958-1959Charles Henry Fiske Ill Scholar at Trinity College, Cambridge University, England
1959-1960Knox Fellow at Trinity College, Cambridge University, England
1977The Thomas B. Cooley Award for Scientific Achievement, awarded by the Cooley's Anemia Blood and Research Foundation for Children
1991The 1991 Mary Ann Liebert Biotherapeutics Award
1991Ralph R. Braund Award in Cancer Research, University of Tennessee
1992Honorary Doctorate of Humane Letters, University of Oklahoma
19921992 Award for Excellence in Technology Transfer, awarded by the Federal Laboratory Consortium, Executive Branch, U.S. Government
1992Fellow, AAAS
1992Myron Karon Memorial Lectureship, Children's Hospital Los Angeles, Los Angeles, CA
1993Distinguished Scientist Lecture, International and American Associations for Dental Research
1993Plenary Lecture, 17th International Congress of Genetics
1993CIBA-Drew Award in Biomedical Research
1993The National Hemophilia Foundation – Dr. Murray Thelin Award
1994The King Faisal International Prize in Medicine
1994Runner up: Time magazine Man-of-the-Year
1995Keynote Lecture, Gene Therapy and Molecular Medicine Conference, Keystone Symposia
1995The National Biotechnology Award, Oxford Bioscience Partners
1995Sheen Award, National Westminster Bank
1996Genesis Award, Pacific Center for Health Policy and Ethics, USC
19961996 Humanitarian Award, National Organization of Rare Disorders (NORD)
1996Tribute Symposium "ln Utero Stem Cell Transplantation and Gene Therapy, A Scientific Symposium in Honor of: W. French Anderson, M.D. and George Stamatoyannopoulos, M.D., Dr. Sci".
1996Keynote Speaker, Inauguration Programme, San Raffaele Biomedical Science Park Congress Centre, Milan Italy
1998Inductee, Oklahoma Hall of Fame
2002Hamdan International Award for Medical Excellence
2003Coudert Institute Award for Medical Sciences
2003Pioneers of Molecular Biology, Time magazine
2003Honorary Professor, Sun Vat-sen University Cancer Center, Guangzhou, China
2003Honorary Professor, Peking Union Medical Center, Beijing China
2004Profiles in Science, National Library of Medicine, NIH

Related Research Articles

<span class="mw-page-title-main">Gene therapy</span> Medical field

Gene therapy is a medical technology that aims to produce a therapeutic effect through the manipulation of gene expression or through altering the biological properties of living cells.

<span class="mw-page-title-main">Retrovirus</span> Family of viruses

A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. After invading a host cell's cytoplasm, the virus uses its own reverse transcriptase enzyme to produce DNA from its RNA genome, the reverse of the usual pattern, thus retro (backwards). The new DNA is then incorporated into the host cell genome by an integrase enzyme, at which point the retroviral DNA is referred to as a provirus. The host cell then treats the viral DNA as part of its own genome, transcribing and translating the viral genes along with the cell's own genes, producing the proteins required to assemble new copies of the virus. Many retroviruses cause serious diseases in humans, other mammals, and birds.

<span class="mw-page-title-main">Thalassemia</span> Medical condition

Thalassemias are inherited blood disorders that result in abnormal hemoglobin. Symptoms depend on the type of thalassemia and can vary from none to severe. Often there is mild to severe anemia as thalassemia can affect the production of red blood cells and also affect how long the red blood cells live. Symptoms of anemia include feeling tired and having pale skin. Other symptoms of thalassemia include bone problems, an enlarged spleen, yellowish skin, pulmonary hypertension, and dark urine. Slow growth may occur in children. Symptoms and presentations of thalassemia can change over time.

<span class="mw-page-title-main">Alpha-thalassemia</span> Thalassemia involving the genes HBA1and HBA2 hemoglobin genes

Alpha-thalassemia is a form of thalassemia involving the genes HBA1 and HBA2. Thalassemias are a group of inherited blood conditions which result in the impaired production of hemoglobin, the molecule that carries oxygen in the blood. Normal hemoglobin consists of two alpha chains and two beta chains; in alpha-thalassemia, there is a quantitative decrease in the amount of alpha chains, resulting in fewer normal hemoglobin molecules. Furthermore, alpha-thalassemia leads to the production of unstable beta globin molecules which cause increased red blood cell destruction. The degree of impairment is based on which clinical phenotype is present.

<span class="mw-page-title-main">Beta thalassemia</span> Thalassemia characterized by the reduced or absent synthesis of the beta globin chains of hemoglobin

Beta thalassemias are a group of inherited blood disorders. They are forms of thalassemia caused by reduced or absent synthesis of the beta chains of hemoglobin that result in variable outcomes ranging from severe anemia to clinically asymptomatic individuals. Global annual incidence is estimated at one in 100,000. Beta thalassemias occur due to malfunctions in the hemoglobin subunit beta or HBB. The severity of the disease depends on the nature of the mutation.

The human β-globin locus is composed of five genes located on a short region of chromosome 11, responsible for the creation of the beta parts of the oxygen transport protein Haemoglobin. This locus contains not only the beta globin gene but also delta, gamma-A, gamma-G, and epsilon globin. Expression of all of these genes is controlled by single locus control region (LCR), and the genes are differentially expressed throughout development.

Hemoglobin Barts, abbreviated Hb Barts, is an abnormal type of hemoglobin that consists of four gamma globins. It is moderately insoluble, and therefore accumulates in the red blood cells. Hb Barts has an extremely high affinity for oxygen, so it cannot release oxygen to the tissue. Therefore, this makes it an inefficient oxygen carrier. As an embryo develops, it begins to produce alpha-globins at weeks 5–6 of development. When both of the HBA1 and HBA2 genes which code for alpha globins becomes dysfunctional, the affected fetuses will have difficulty in synthesizing a functional hemoglobin. As a result, gamma chains will accumulate and form four gamma globins. These gamma globins bind to form hemoglobin Barts. It is produced in the disease alpha-thalassemia and in the most severe of cases, it is the only form of hemoglobin in circulation. In this situation, a fetus will develop hydrops fetalis and normally die before or shortly after birth, unless intrauterine blood transfusion is performed.

<span class="mw-page-title-main">Hemoglobin subunit alpha</span> Human hemoglobin protein

Hemoglobin subunit alpha, Hemoglobin, alpha 1, is a hemoglobin protein that in humans is encoded by the HBA1 gene.

<span class="mw-page-title-main">HBG2</span>

Hemoglobin subunit gamma-2 is a protein that in humans is encoded by the HBG2 gene.

<span class="mw-page-title-main">HBG1</span>

Hemoglobin subunit gamma-1 is a protein that in humans is encoded by the HBG1 gene.

<span class="mw-page-title-main">KLF2</span> Protein-coding gene in the species Homo sapiens

Krüppel-like Factor 2 (KLF2), also known as lung Krüppel-like Factor (LKLF), is a protein that in humans is encoded by the KLF2 gene on chromosome 19. It is in the Krüppel-like factor family of zinc finger transcription factors, and it has been implicated in a variety of biochemical processes in the human body, including lung development, embryonic erythropoiesis, epithelial integrity, T-cell viability, and adipogenesis.

The C-rich Not M, -ND stability element is a short part of a gene sequence important for the proper synthesis of globin and several other human proteins.

<span class="mw-page-title-main">Hemoglobin E</span> Medical condition

Hemoglobin E (HbE) is an abnormal hemoglobin with a single point mutation in the β chain. At position 26 there is a change in the amino acid, from glutamic acid to lysine (E26K). Hemoglobin E is very common among people of Southeast Asian, Northeast Indian, Sri Lankan and Bangladeshi descent.

<span class="mw-page-title-main">Hemoglobin, alpha 2</span> Mammalian protein found in Homo sapiens

Hemoglobin, alpha 2 also known as HBA2 is a gene that in humans codes for the alpha globin chain of hemoglobin.

Betibeglogene autotemcel, sold under the brand name Zynteglo, is a gene therapy for the treatment for beta thalassemia. It was developed by Bluebird Bio and was given breakthrough therapy designation by the US Food and Drug Administration in February 2015.

<span class="mw-page-title-main">Stefan Karlsson (professor)</span>

Stefan Karlsson is a Professor of Molecular Medicine and Gene Therapy at the Lund Stem Cell Center, in the Department of Laboratory Medicine, Lund University, Sweden. He is recognized for significant contributions to the fields of gene therapy and hematopoietic stem cell biology and in 2009 was awarded the Tobias Prize by The Royal Swedish Academy of Sciences.

Hemoglobin H (Hb H)Disease, also called alpha-thalassemia intermedia, is a disease affecting hemoglobin, the oxygen carrying molecule within red blood cells. It is a form of Alpha-thalassemia which most commonly occurs due to deletion of 3 out of 4 of the α-globin genes.

Robert Williamson is a retired British-Australian molecular biologist who specialised in the mapping, gene identification, and diagnosis of human genetic disorders.

<span class="mw-page-title-main">Charles Daniel Lane</span> British molecular biologist

Charles Daniel Lane is a British molecular biologist who along with colleagues Gerard Marbaix and John Gurdon discovered the oocyte exogenous mRNA expression system – a system that not only reveals aspects of the control of gene expression but also provides a "living test tube" for the study of macromolecules: such a whole cell system also shows the merits of a non-reductionist approach, and the possibility of mRNA therapeutics.

Haig H. Kazazian, Jr. was a professor in the Department of Genetic Medicine at Johns Hopkins University School of Medicine in Baltimore, Maryland. Kazazian was an elected member of the National Academy of Sciences and the American Academy of Arts and Sciences.

References

  1. 1 2 3 4 5 6 Burke, Bob and Barry Epperson (2003). W. French Anderson: Father of Gene Therapy. Oklahoma City: Oklahoma Heritage Association. ISBN   1885596251. OCLC   52290918.
  2. Lyon, Jeff and Peter Gomer (1995), Altered Fates: Gene Therapy and the Retooling of Human Life, W.W. Norton & Company, ISBN   0393315282
  3. Thompson, Larry (1994), Correcting The Code: Inventing the Genetic Cure for the Human Body, Simon & Schuster, ISBN   0-671-77082-9
  4. Anderson, W.F.: Arithmetical computations in Roman numerals. Classical Philology, LI: 145-150, 1956.
  5. Anderson, W.F.: Arithmetical procedure in Minoan linear A and in Minoan-Greek linear B. Amer. J. Archaeology, 62: 363-368, 1958.
  6. Anderson, W.F.; Bell, J.A.; Diamond, J.M., Wilson, K.R.: Rate of thermal isomerization of cis-butene-2. J. Am. Chem. Soc., 80: 2384-2386, 1958.
  7. Marmur, J.; Anderson, W.F.; Matthews, L.; Berns, K.; Gajewska, E.; Lane, D.; Doty, P.: The effects of ultraviolet light on the biological and physical chemical properties of deoxyribonucleic acids. J. Cell. and Comp. Physiol., Suppl. 1, 58: 33-55, 1961.
  8. "The Prodigies", Time magazine, March 19, 1956, page 83
  9. Anderson, W.F.; Gorini, L.; Breckenridge, l.: Role of ribosomes in streptomycin activated suppression. Proc. Natl. Acad. Sci. USA, 54: 1076-1083, 1965.
  10. Nirenberg, M.; Caskey, T.; Marshall, R.; Brimacombe, R.; Kellogg, D.; Doctor, B.; Hatfield, D.; Levin, J.; Rottman, F.; Pestka, S.; Wilcox, M.; Anderson, W.F.: The RNA code and protein synthesis. Cold Spring Harb. Symp. Quant. Biol., 31: 11-24, 1966.
  11. Prichard, P.M.; Gilbert, J.M.; Shafritz, D.A.; Anderson, W.F.: Factors for the initiation of haemoglobin synthesis by rabbit reticulocyte ribosomes. Nature, 226: 511-514, 1970.
  12. Gilbert, J.M. and Anderson, W.F.: Cell-free hemoglobin synthesis, II. Characteristics of the transfer ribonucleic acid-dependent assay system. J. Biol. Chem., 245: 2342-2349, 1970.
  13. Gilbert, J.M.; Thornton, A.G.; Nienhuis, A.W.; Anderson, W.F.: Cell-free hemoglobin synthesis in beta-thalassemia. Proc. Natl. Acad. Sci. USA, 67: 1854-1861, 1970.
  14. Nienhuis, A.W.; Laycock, D.G.; Anderson, W.F.: Translation of rabbit haemoglobin messenger RNA by thalassemic and non-thalassemic ribosomes. Nature New Biology, 231: 205-208, 1971.
  15. Nienhuis, A.W. and Anderson, W.F.: Isolation and translation of hemoglobin messenger RNA from thalassemia, sickle cell anemia, and normal human reticulocytes. J. Clin. Invest., 50: 2458-2460, 1971.
  16. Nienhuis, A.W.; Canfield, P.H.; Anderson, W.F.: Hemoglobin messenger RNA from human bone marrow: Isolation and translation in homozygous and heterozygous thalassemia. J. Clin. Invest., 52: 1735-1745, 1973.
  17. Anderson, W.F. and Diacumakos, E.G.: Genetic engineering in mammalian cells. Scientific American. 245: 106-121, 1981.
  18. Anderson, W.F.; Killos, l.; Sanders-Haigh, L.; Kretschmer, P.J.; Diacumakos, E.G.: Replication and expression of thymidine kinase and human globin genes microinjected into mouse fibroblasts. Proc. Natl. Acad. Sci. USA, 77: 5399-5403, 1980.
  19. Humphries, R.K.; Berg, P.; DiPietro, J.; Bernstein, S.; Baur, A.; Nienhuis, A.W.; Anderson, W.F.: Transfer of human and murine globin-gene sequences into transgenic mice. Am. J. Hum. Genet.• 37: 295-310, 1985.
  20. Anderson, W.F., Prospects for human gene therapy. Science, 226: 401-409, 1984.
  21. Yu, S.-F; von Ruden, T.; Kantoff, P.; Garber, C.; Seiberg, M.; Ruther, U.; Anderson, W.F.; Wagner, E.F.; Gilboa, E.: Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc. Natl. Acad. Sci. USA, 83: 3194-3198, 1986.
  22. Gilboa, E.; Eglitis, M.A.; Kantoff, P.W.; Anderson, W.F.: Transfer and expression of cloned genes using retroviral vectors. Bio Techniques, 4: 504-512. 1986.
  23. Eglitis, M.A.; Kantoff, P.; Gilboa, E.; Anderson, W.F.: Gene expression in mice after high efficiency retroviral-mediated gene transfer. Science, 230: 1395-1398, 1985.
  24. Anderson, W.F.; Kantoff, P.; Eglitis, M.; Mclachlin, J.; Karson, E.; Zwiebel, J.; Nienhuis, A.; Karlsson, S.; Blaese, R.M.; Kohn, D.; Gilboa, E.; Armentano, D.; Zanjani, E.D.; Flake, A.; Harrison, M.R.; Gillio, A.; Bordignon, C.; O'Reilly, R.: Gene transfer and expression in nonhuman primates using retroviral vectors. Cold Spring Harb. Symp. Quant. Biol., 51: 1073-1081, 1986.
  25. Kantoff, P. W.; Gillio, A.P.; Mclachlin, J. R.; Bordignon, C.; Eglitis, M.A.; Kernan, N. A.; Moen, R. C.; Kohn, D. B.; Yu, S.-F.; Karson, E.; Karlsson, S.; Zwiebel, J. A.; Gilboa, E.; Blaese, R. M.; Nienhuis, A.; O'Reilly, R. J.; Anderson, W. F.: Expression of human adenosine deaminase in nonhuman primates after retrovirus-mediated gene transfer. :!.:. Exp. Med., 166: 219-234, 1987.
  26. Cornetta, K.; Morgan, R.A.; Gillio, A.; Sturm, S.; Baltrucki, L.; O'Reilly, R.; Anderson, W.F.: No retroviremia in long-term follow-up of monkeys exposed to a murine amphotropic retrovirus. Hum. Gene Ther., 2: 215-219, 1991.
  27. Anderson, W.F. and Fletcher, J.C.: Gene therapy in human beings: When is it ethical to begin? N. Engl. J. Med., 303: 1293-1297, 1980.
  28. Rosenberg, S.A.; Aebersold, P.; Cornetta, K.; Kasid, A.; Morgan, R.A.; Moen, R.; Karson, E.M.; Lotze, M.T.; Yang, J.C.; Topalian, S.L.; Merino, M.J.; Culver, K.; Miller, A.O.; Blaese, M.D.; Anderson, W.F.: Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med., 323: 570-578,1990.
  29. Rosenberg, S.A., Anderson, W.F., Blaese, M., Hwu, P., Vannelli, J.R., Yang, J.C., Topalian, S.L., Schwartzentruber, O.J., Weber, J.S., Ettinghausen, S.E., Parkinson, D.N., White, D.E.: The development of gene therapy for the treatment of cancer. Ann. of Surg. 218: 455- 464, 1993.
  30. Kantoff, P.; Kohn, O.B.; Mitsuya, H.; Armentano, D.; Sieberg, M.; Zwiebel, J.A.; Eglitis, M.A.; Mclachlin, J.R.; Wiginton, D.A.; Hutton, J.J.; Horowitz, S.O.; Gilboa, E.; Blaese, R.M.; Anderson, W.F.: Correction of adenosine deaminase deficiency in human T and B cells using retroviral-mediated gene transfer. Proc. Natl. Acad. Sci. USA, 83: 6563-6567, 1986.
  31. Kohn, D.B.; Mitsuya, H.; Ballow, M.; Selegue, J.E.; Barankiewicz, J.; Cohen, A.; Gelfand, E.; Anderson, W.F.; Blaese, R.M.: Establishment and characterization of adenosine deaminase-deficient human T cell lines. J. lmmunol., 142: 3971-3977, 1989.
  32. Anderson, W.F.: Human Gene Therapy. Science, 256: 808-813, 1992.
  33. Anderson, W.F., McGarrity, G.J., Moen, R.C.: Report to the NIH Recombinant DNA Advisory Committee on murine replication-competent retrovirus (RCR) assays. Hum. Gene Ther., 4: 311-321, 1993
  34. Blaese, R.M., Culver, K.W., Miller, A.O., Carter, C.S., Fleisher, T., Clerici, M., Shearer, G., Chang, L., Chiang, Y., Tolstoshev, P., Greenblatt, J.J., Rosenberg, S.A., Klien, H., Berger, M., Muller, C.A., Ramsey, J.W., Muul, L., Morgan, R.A., and Anderson, W.F.: T lymphocyte-directed gene therapy for ADA deficiency SCID: Initial trial results after 4 years. Science. 270: 475-480, 1995.
  35. Mullen, C.A., Snitzer, K., Culver, K.W., Morgan, R.A., Anderson, W.F., Blaese, R. M.: Molecular analysis of T lymphocyte-directed gene therapy for adenosine deaminase deficiency: long-term expression in vivo of genes introduced with a retroviral vector. Hum. Gene Ther. 7:1123-1129, 1996.
  36. Muul, L.M., Tuschong, L.M., Soenen, S.l., Jagadeesh, G.J., Ramsey, W.J., Long, L., Carter, C.S., Garabedian, E.K., Alleyne, M., Brown, M., Bernstein, W., Schurman, S.H., Fleisher, T.A., Leitman, S.F., Dunbar, C.E., Blaese, R.M., Candotti, F.: Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial. Blood, 101:2563- 2569, 2003
  37. Gordon, E.M., Chen, Z.H., Liu, L., Whitley, M., Liu, l., Wei, D., Groshen, S., Hinton, D.R., Anderson, W.F., Beart, R.W., Hall, F.L.: Systemic administration of a matrix-targeted retroviral vector is efficacious for cancer gene therapy in mice. Hum. Gene. Ther.,12: 193-204, 2001.
  38. Anderson, W.F.: Human Gene Therapy. Nature, 392 [SUPP]: 25-30, 1998.
  39. Anderson, W. F.: The best of times, the worst of times. Science, 288: 627-629, 2000.
  40. Anderson, W.F.: Gene therapy scores against cancer. Nature Medicine 6: 862-863, 2000.
  41. Anderson, W.F.: Gene therapy. Sci. Amer., 273:124-128, 1995.
  42. Anderson, W.F.: A cure that may cost us ourselves. Newsweek. New York. pp. 74-76, January 1, 2000
  43. Studer, V., Hang, G., Pandolfi, A., Ortiz, M., Anderson, W. F., Quake, S. R.: Scaling properties of a low-actuation pressure microfluidic valve. J. Applied Physics, 95: 393- 398, 2004.
  44. Marcus, J.S., Anderson, W.F., Quake, S.R.: Single cell mRNA isolation and analysis. Anal. Chem, 2006 May 1; 78(9) 3084-9
  45. Zhao, Y., Zhan, Y., Burke, K.A., Anderson, W. F.: Soluble factor(s) from bone marrow cells can rescue lethally irradiated mice by protecting endogenous hematopoietic stem cells. Exp. Hemat., 33: 428-434, 2005.
  46. Anderson, W. French: Preventable Injuries in Taekwondo", Tae Kwon Do Journal, 1(4):13, 1982
  47. Anderson, W. French: "Prevention and Treatment of Taekwondo Injuries: General Principles", Tae Kwon Do Journal, Vol. 2(1): 8-9, 1983
  48. Anderson, W. French: "Prevention of Head Injuries in Taekwondo", Tae Kwon Do Journal, Vol. 4(1): 5-7, 1985.
  49. W. French Anderson, M.D., Forensic Analysis of the April 11, 1986, FBI Firefight, Paladin Press, 2006, ISBN   978-1-58160-490-0
  50. Anderson, W. French, "A Forensic Analysis of the Warren Earp Killing", in The Death of Warren Baxter Earp: A Closer Look, by Michael M. Hickey, Talei Publishers, Inc., Honolulu, Hawaii, pages 313-320, 2000.
  51. Lee, I., Kosko, B., Anderson, W.F.: Modeling gunshot bruises in soft body armor with an adaptive fuzzy system. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 35: 1374-1390, 2005.
  52. "Respected Mentor Now Abuse Suspect". LA Times. September 20, 2004.
  53. "W. French Anderson convicted". The Scientist Magazine®. Retrieved 2019-04-29.
  54. "Prominent USC Geneticist Sentenced to 14 Years for Molesting Girl_AP". AHRP. 2007-02-03. Retrieved 2019-04-29.
  55. Warner, Susan (2007-02-04). "Colleagues upset by Anderson sentence". The Scientist.
  56. ""Father of gene therapy" faces harsh reality: a tarnished legacy and an ankle monitor". STAT. 2018-07-23. Retrieved 2019-04-29.

Further reading