YDG SRA protein domain

Last updated
YDG Set and Ring Associated protein domain
Identifiers
SymbolYDG_SRA
Pfam PF02182
InterPro IPR003105
SMART SRA

In molecular biology, this protein domain has been termed SRA-YDG, which is the abbreviation for SET and Ring finger Associated, YDG motif. Additional characteristics of the domain include conservation of up to 13 evenly spaced glycine residues and a VRV(I/V)RG motif. The protein domain is mainly found in plants and animals and in bacteria.

Contents

Function

The function of this protein domain, in animals, is to aid progression through the cell cycle. This domain is associated with the Np95-like ring finger protein and the related gene product Np97, which contains PHD and RING FINGER domains; important in cell cycle progression. Np95 is a chromatin-associated ubiquitin ligase, binding to histones is direct and shows a remarkable preference for histone H3 and its N-terminal tail. The SRA-YDG domain contained in Np95 is needed for the interaction with histones and for chromatin binding in vivo . [1] [2]

In plants the SRA-YDG domain is associated with the SET domain, found in a family of histone methyl transferases, which switch genes "off" by adding a methyl group. In bacteria it is found in association with HNH, a non-specific nuclease motif. [2] [3]

Structure

This protein domain contains both alpha helices and beta sheets. In particular, the beta sheets are arranged in an antiparallel formation. More specifically, it contains a beta grasp fold.

Related Research Articles

Ubiquitin Regulatory protein

Ubiquitin is a small regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ubiquitously. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 1980s. Four genes in the human genome code for ubiquitin: UBB, UBC, UBA52 and RPS27A.

In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from altering the number of copies of RNA that are transcribed, to the temporal control of when the gene is transcribed. This control allows the cell or organism to respond to a variety of intra- and extracellular signals and thus mount a response. Some examples of this include producing the mRNA that encode enzymes to adapt to a change in a food source, producing the gene products involved in cell cycle specific activities, and producing the gene products responsible for cellular differentiation in multicellular eukaryotes, as studied in evolutionary developmental biology.

Ubiquitin ligase Protein

A ubiquitin ligase is a protein that recruits an E2 ubiquitin-conjugating enzyme that has been loaded with ubiquitin, recognizes a protein substrate, and assists or directly catalyzes the transfer of ubiquitin from the E2 to the protein substrate. In simple and more general terms, the ligase enables movement of ubiquitin from a ubiquitin carrier to another thing by some mechanism. The ubiquitin, once it reaches its destination, ends up being attached by an isopeptide bond to a lysine residue, which is part of the target protein. E3 ligases interact with both the target protein and the E2 enzyme, and so impart substrate specificity to the E2. Commonly, E3s polyubiquitinate their substrate with Lys48-linked chains of ubiquitin, targeting the substrate for destruction by the proteasome. However, many other types of linkages are possible and alter a protein's activity, interactions, or localization. Ubiquitination by E3 ligases regulates diverse areas such as cell trafficking, DNA repair, and signaling and is of profound importance in cell biology. E3 ligases are also key players in cell cycle control, mediating the degradation of cyclins, as well as cyclin dependent kinase inhibitor proteins. The human genome encodes over 600 putative E3 ligases, allowing for tremendous diversity in substrates.

Mdm2 Protein-coding gene in the species Homo sapiens

Mouse double minute 2 homolog (MDM2) also known as E3 ubiquitin-protein ligase Mdm2 is a protein that in humans is encoded by the MDM2 gene. Mdm2 is an important negative regulator of the p53 tumor suppressor. Mdm2 protein functions both as an E3 ubiquitin ligase that recognizes the N-terminal trans-activation domain (TAD) of the p53 tumor suppressor and as an inhibitor of p53 transcriptional activation.

Methyltransferase Group of methylating enzymes

Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossmann fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltransferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the leaving group and the methyl group attached to it acts as the electrophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases. Another type of methyl transfer is the radical S-Adenosyl methionine (SAM) which is the methylation of unactivated carbon atoms in primary metabolites, proteins, lipids, and RNA.

PHD finger

The PHD finger was discovered in 1993 as a Cys4-His-Cys3 motif in the plant homeodomain proteins HAT3.1 in Arabidopsis and maize ZmHox1a. The PHD finger motif resembles the metal binding RING domain (Cys3-His-Cys4) and FYVE domain. It occurs as a single finger, but often in clusters of two or three, and it also occurs together with other domains, such as the chromodomain and the bromodomain.

H2AFX Histone protein from the H2A family

H2A histone family member X is a type of histone protein from the H2A family encoded by the H2AFX gene. An important phosphorylated form is γH2AX (S139), which forms when double-strand breaks appear.

TRIM28 Protein-coding gene in the species Homo sapiens

Tripartite motif-containing 28 (TRIM28), also known as transcriptional intermediary factor 1β (TIF1β) and KAP1, is a protein that in humans is encoded by the TRIM28 gene.

CUL4A Protein-coding gene in the species Homo sapiens

Cullin-4A is a protein that in humans is encoded by the CUL4A gene. CUL4A belongs to the cullin family of ubiquitin ligase proteins and is highly homologous to the CUL4B protein. CUL4A regulates numerous key processes such as DNA repair, chromatin remodeling, spermatogenesis, haematopoiesis and the mitotic cell cycle. As a result, CUL4A has been implicated in several cancers and the pathogenesis of certain viruses including HIV. A component of a CUL4A complex, Cereblon, was discovered to be a major target of the teratogenic agent thalidomide.

DDB2

DNA damage-binding protein 2 is a protein that in humans is encoded by the DDB2 gene.

UHRF1 Protein-coding gene in the species Homo sapiens

Ubiquitin-like, containing PHD and RING finger domains, 1, also known as UHRF1, is a protein which in humans is encoded by the UHRF1 gene.

TRIM37

Tripartite motif-containing protein 37 is an E3 ubiquitin ligase in humans that is encoded by the TRIM37 gene.

HIST1H2BB

Histone H2B type 1-B is a protein that in humans is encoded by the HIST1H2BB gene.

Histone H3.1

Histone H3.1 is a protein in humans that is encoded by the H3C1 gene.

HIST1H2AB

Histone H2A type 1-B/E is a protein that in humans is encoded by the HIST1H2AB gene.

RNF123

E3 ubiquitin-protein ligase RNF123 is an enzyme that in humans is encoded by the RNF123 gene.

RNF8

E3 ubiquitin-protein ligase RNF8 is an enzyme that in humans is encoded by the RNF8 gene. RNF8 has activity both in immune system functions and in DNA repair.

PCGF1

Polycomb group RING finger protein 1, PCGF1, also known as NSPC1 or RNF68 is a RING finger domain protein that in humans is encoded by the PCGF1 gene.

Methyl-CpG-binding domain

The Methyl-CpG-binding domain (MBD) in molecular biology binds to DNA that contains one or more symmetrically methylated CpGs. MBD has negligible non-specific affinity for unmethylated DNA. In vitro foot-printing with the chromosomal protein MeCP2 showed that the MBD could protect a 12 nucleotide region surrounding a methyl CpG pair.

KDM2B

The human KDM2B gene encodes the protein lysine (K)-specific demethylase 2B.

References

  1. Fujimori A, Matsuda Y, Takemoto Y, Hashimoto Y, Kubo E, Araki R, Fukumura R, Mita K, Tatsumi K, Muto M (December 1998). "Cloning and mapping of Np95 gene which encodes a novel nuclear protein associated with cell proliferation". Mamm. Genome. 9 (12): 1032–5. doi:10.1007/s003359900920. PMID   9880673. S2CID   23502609.
  2. 1 2 Citterio E, Papait R, Nicassio F, Vecchi M, Gomiero P, Mantovani R, Di Fiore PP, Bonapace IM (March 2004). "Np95 is a histone-binding protein endowed with ubiquitin ligase activity". Mol. Cell. Biol. 24 (6): 2526–35. doi:10.1128/MCB.24.6.2526-2535.2004. PMC   355858 . PMID   14993289.
  3. Baumbusch LO, Thorstensen T, Krauss V, Fischer A, Naumann K, Assalkhou R, Schulz I, Reuter G, Aalen RB (November 2001). "The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes". Nucleic Acids Res. 29 (21): 4319–33. doi:10.1093/nar/29.21.4319. PMC   60187 . PMID   11691919.
This article incorporates text from the public domain Pfam and InterPro: IPR003105