Yhc

Last updated

The York Haskell Compiler (Yhc) is a no longer maintained [1] open source bytecode compiler for the functional programming language Haskell; it primarily targets the Haskell '98 standard. It is one of the four main Haskell compilers (behind GHC, Hugs and nhc98). Yhc is based on the nhc98 Haskell compiler, and is intended eventually to be a more portable, cleaner, better performing rewrite of nhc98 with more and better features. [2] In particular, Yhc features integrated support for Hat, the Haskell tracer. The Yhc project uses Darcs for version control. It was originally developed at the Department of Computer Science at the University of York in the UK.

Related Research Articles

In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program.

In programming language theory, lazy evaluation, or call-by-need, is an evaluation strategy which delays the evaluation of an expression until its value is needed and which also avoids repeated evaluations (sharing).

occam (programming language)

occam is a programming language which is concurrent and builds on the communicating sequential processes (CSP) process algebra, and shares many of its features. It is named after philosopher William of Ockham after whom Occam's razor is named.

Generic programming is a style of computer programming in which algorithms are written in terms of types to-be-specified-later that are then instantiated when needed for specific types provided as parameters. This approach, pioneered by the ML programming language in 1973, permits writing common functions or types that differ only in the set of types on which they operate when used, thus reducing duplication. Such software entities are known as generics in Ada, C#, Delphi, Eiffel, F#, Java, Nim, Python, Go, Rust, Swift, TypeScript and Visual Basic .NET. They are known as parametric polymorphism in ML, Scala, Julia, and Haskell ; templates in C++ and D; and parameterized types in the influential 1994 book Design Patterns.

In computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type to every "term". Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term. Type systems formalize and enforce the otherwise implicit categories the programmer uses for algebraic data types, data structures, or other components.

A list comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation as distinct from the use of map and filter functions.

In computer science, pattern matching is the act of checking a given sequence of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition, the match usually has to be exact: "either it will or will not be a match." The patterns generally have the form of either sequences or tree structures. Uses of pattern matching include outputting the locations of a pattern within a token sequence, to output some component of the matched pattern, and to substitute the matching pattern with some other token sequence.

NHC could refer to:

<span class="mw-page-title-main">Conditional (computer programming)</span> Control flow statement that executes code according to some condition(s)

In computer science, conditionals are programming language commands for handling decisions. Specifically, conditionals perform different computations or actions depending on whether a programmer-defined boolean condition evaluates to true or false. In terms of control flow, the decision is always achieved by selectively altering the control flow based on some condition.

The Glasgow Haskell Compiler (GHC) is an open-source native code compiler for the functional programming language Haskell. It provides a cross-platform environment for the writing and testing of Haskell code and it supports numerous extensions, libraries, and optimisations that streamline the process of generating and executing code. GHC is the most commonly used Haskell compiler. The lead developers are Simon Peyton Jones and Simon Marlow.

<span class="mw-page-title-main">LLVM</span> Compiler backend for multiple programming languages

LLVM is a set of compiler and toolchain technologies that can be used to develop a front end for any programming language and a back end for any instruction set architecture. LLVM is designed around a language-independent intermediate representation (IR) that serves as a portable, high-level assembly language that can be optimized with a variety of transformations over multiple passes.

Lennart Augustsson is a Swedish computer scientist. He was previously a lecturer at the Computing Science Department at Chalmers University of Technology. His research field is functional programming and implementations of functional languages.

In computer science, bootstrapping is the technique for producing a self-compiling compiler – that is, a compiler written in the source programming language that it intends to compile. An initial core version of the compiler is generated in a different language ; successive expanded versions of the compiler are developed using this minimal subset of the language. The problem of compiling a self-compiling compiler has been called the chicken-or-egg problem in compiler design, and bootstrapping is a solution to this problem.

Simon Peyton Jones British computer scientist

Simon Peyton Jones is a British computer scientist who researches the implementation and applications of functional programming languages, particularly lazy functional programming.

In computer science, a type class is a type system construct that supports ad hoc polymorphism. This is achieved by adding constraints to type variables in parametrically polymorphic types. Such a constraint typically involves a type class T and a type variable a, and means that a can only be instantiated to a type whose members support the overloaded operations associated with T.

xmonad Dynamic window manager for X Window System

xmonad is a dynamic window manager (tiling) for the X Window System, noted for being written in the functional programming language Haskell.

In the area of mathematical logic and computer science known as type theory, a kind is the type of a type constructor or, less commonly, the type of a higher-order type operator. A kind system is essentially a simply typed lambda calculus "one level up", endowed with a primitive type, denoted and called "type", which is the kind of any data type which does not need any type parameters.

Haskell is a general-purpose, statically-typed, purely functional programming language with type inference and lazy evaluation. Designed for teaching, research and industrial applications, Haskell has pioneered a number of programming language features such as type classes, which enable type-safe operator overloading. Haskell's main implementation is the Glasgow Haskell Compiler (GHC). It is named after logician Haskell Curry.

Idris is a purely-functional programming language with dependent types, optional lazy evaluation, and features such as a totality checker. Idris may be used as a proof assistant, but it is designed to be a general-purpose programming language similar to Haskell.

<span class="mw-page-title-main">PureScript</span>

PureScript is a strongly-typed, purely-functional programming language that compiles to JavaScript. It can be used to develop web applications, server side apps, and also desktop applications with use of Electron. Its syntax is mostly comparable to that of Haskell. In addition, it introduces row polymorphism and extensible records. Also, contrary to Haskell, PureScript adheres to a strict evaluation strategy.

References

  1. Mitchell, Neil. "Yhc is dead". York Haskell Compiler. Retrieved 2 September 2021.
  2. Tom Shackell (February 2006). "Yhc: The York Haskell Compiler" (PDF).