Young subgroup

Last updated • 1 min readFrom Wikipedia, The Free Encyclopedia

In mathematics, the Young subgroups of the symmetric group are special subgroups that arise in combinatorics and representation theory. When is viewed as the group of permutations of the set , and if is an integer partition of , then the Young subgroup indexed by is defined by

where denotes the set of permutations of and denotes the direct product of groups. Abstractly, is isomorphic to the product . Young subgroups are named for Alfred Young. [1]

When is viewed as a reflection group, its Young subgroups are precisely its parabolic subgroups. They may equivalently be defined as the subgroups generated by a subset of the adjacent transpositions . [2]

In some cases, the name Young subgroup is used more generally for the product , where is any set partition of (that is, a collection of disjoint, nonempty subsets whose union is ). [3] This more general family of subgroups consists of all the conjugates of those under the previous definition. [4] These subgroups may also be characterized as the subgroups of that are generated by a set of transpositions. [5]

Related Research Articles

In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean n-spaces. For lower dimensions n = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called n-dimensional volume, n-volume, hypervolume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by λ(A).

<span class="mw-page-title-main">Symmetric group</span> Type of group in abstract algebra

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .

In mathematics, and in particular in group theory, a cyclic permutation is a permutation consisting of a single cycle. In some cases, cyclic permutations are referred to as cycles; if a cyclic permutation has k elements, it may be called a k-cycle. Some authors widen this definition to include permutations with fixed points in addition to at most one non-trivial cycle. In cycle notation, cyclic permutations are denoted by the list of their elements enclosed with parentheses, in the order to which they are permuted.

In mathematics, specifically in commutative algebra, the elementary symmetric polynomials are one type of basic building block for symmetric polynomials, in the sense that any symmetric polynomial can be expressed as a polynomial in elementary symmetric polynomials. That is, any symmetric polynomial P is given by an expression involving only additions and multiplication of constants and elementary symmetric polynomials. There is one elementary symmetric polynomial of degree d in n variables for each positive integer dn, and it is formed by adding together all distinct products of d distinct variables.

In mathematics, a Young symmetrizer is an element of the group algebra of the symmetric group, constructed in such a way that, for the homomorphism from the group algebra to the endomorphisms of a vector space obtained from the action of on by permutation of indices, the image of the endomorphism determined by that element corresponds to an irreducible representation of the symmetric group over the complex numbers. A similar construction works over any field, and the resulting representations are called Specht modules. The Young symmetrizer is named after British mathematician Alfred Young.

In statistical mechanics, the Temperley–Lieb algebra is an algebra from which are built certain transfer matrices, invented by Neville Temperley and Elliott Lieb. It is also related to integrable models, knot theory and the braid group, quantum groups and subfactors of von Neumann algebras.

In mathematics, Schur polynomials, named after Issai Schur, are certain symmetric polynomials in n variables, indexed by partitions, that generalize the elementary symmetric polynomials and the complete homogeneous symmetric polynomials. In representation theory they are the characters of polynomial irreducible representations of the general linear groups. The Schur polynomials form a linear basis for the space of all symmetric polynomials. Any product of Schur polynomials can be written as a linear combination of Schur polynomials with non-negative integral coefficients; the values of these coefficients is given combinatorially by the Littlewood–Richardson rule. More generally, skew Schur polynomials are associated with pairs of partitions and have similar properties to Schur polynomials.

In mathematics, a Brauer algebra is an associative algebra introduced by Richard Brauer in the context of the representation theory of the orthogonal group. It plays the same role that the symmetric group does for the representation theory of the general linear group in Schur–Weyl duality.

In mathematics, the Jack function is a generalization of the Jack polynomial, introduced by Henry Jack. The Jack polynomial is a homogeneous, symmetric polynomial which generalizes the Schur and zonal polynomials, and is in turn generalized by the Heckman–Opdam polynomials and Macdonald polynomials.

In quantum mechanics, an antisymmetrizer is a linear operator that makes a wave function of N identical fermions antisymmetric under the exchange of the coordinates of any pair of fermions. After application of the wave function satisfies the Pauli exclusion principle. Since is a projection operator, application of the antisymmetrizer to a wave function that is already totally antisymmetric has no effect, acting as the identity operator.

In mathematics, Weingarten functions are rational functions indexed by partitions of integers that can be used to calculate integrals of products of matrix coefficients over classical groups. They were first studied by Weingarten (1978) who found their asymptotic behavior, and named by Collins (2003), who evaluated them explicitly for the unitary group.

In mathematics, the Robinson–Schensted–Knuth correspondence, also referred to as the RSK correspondence or RSK algorithm, is a combinatorial bijection between matrices A with non-negative integer entries and pairs (P,Q) of semistandard Young tableaux of equal shape, whose size equals the sum of the entries of A. More precisely the weight of P is given by the column sums of A, and the weight of Q by its row sums. It is a generalization of the Robinson–Schensted correspondence, in the sense that taking A to be a permutation matrix, the pair (P,Q) will be the pair of standard tableaux associated to the permutation under the Robinson–Schensted correspondence.

In mathematics, a symmetric tensor is a tensor that is invariant under a permutation of its vector arguments:

In mathematics, particularly linear algebra, the Schur–Horn theorem, named after Issai Schur and Alfred Horn, characterizes the diagonal of a Hermitian matrix with given eigenvalues. It has inspired investigations and substantial generalizations in the setting of symplectic geometry. A few important generalizations are Kostant's convexity theorem, Atiyah–Guillemin–Sternberg convexity theorem, Kirwan convexity theorem.

In algebra and in particular in algebraic combinatorics, a quasisymmetric function is any element in the ring of quasisymmetric functions which is in turn a subring of the formal power series ring with a countable number of variables. This ring generalizes the ring of symmetric functions. This ring can be realized as a specific limit of the rings of quasisymmetric polynomials in n variables, as n goes to infinity. This ring serves as universal structure in which relations between quasisymmetric polynomials can be expressed in a way independent of the number n of variables.

In mathematics, Schubert polynomials are generalizations of Schur polynomials that represent cohomology classes of Schubert cycles in flag varieties. They were introduced by Lascoux & Schützenberger (1982) and are named after Hermann Schubert.

In combinatorial mathematics, the hook length formula is a formula for the number of standard Young tableaux whose shape is a given Young diagram. It has applications in diverse areas such as representation theory, probability, and algorithm analysis; for example, the problem of longest increasing subsequences. A related formula gives the number of semi-standard Young tableaux, which is a specialization of a Schur polynomial.

In combinatorial mathematics, cyclic sieving is a phenomenon by which evaluating a generating function for a finite set at roots of unity counts symmetry classes of objects acted on by a cyclic group.

<span class="mw-page-title-main">Affine symmetric group</span> Mathematical structure

The affine symmetric groups are a family of mathematical structures that describe the symmetries of the number line and the regular triangular tiling of the plane, as well as related higher-dimensional objects. In addition to this geometric description, the affine symmetric groups may be defined in other ways: as collections of permutations (rearrangements) of the integers that are periodic in a certain sense, or in purely algebraic terms as a group with certain generators and relations. They are studied in combinatorics and representation theory.

The partition algebra is an associative algebra with a basis of set-partition diagrams and multiplication given by diagram concatenation. Its subalgebras include diagram algebras such as the Brauer algebra, the Temperley–Lieb algebra, or the group algebra of the symmetric group. Representations of the partition algebra are built from sets of diagrams and from representations of the symmetric group.

References

  1. Sagan, Bruce (2001), The Symmetric Group (2 ed.), Springer-Verlag, p. 54
  2. Björner, Anders; Brenti, Francesco (2005), Combinatorics of Coxeter groups, Springer, p. 41, doi:10.1007/3-540-27596-7, ISBN   978-3540-442387
  3. Kerber, A. (1971), Representations of permutation groups, vol. I, Springer-Verlag, p. 17
  4. Jones, Andrew R. (1996), "A Combinatorial Approach to the Double Cosets of the Symmetric Group with respect to Young Subgroups", Europ. J. Combinatorics, 17: 647–655
  5. Douvropoulos, Theo; Lewis, Joel Brewster; Morales, Alejandro H. (2022), "Hurwitz Numbers for Reflection Groups I: Generatingfunctionology", Enumerative Combinatorics and Applications, 2 (3): Article #S2R20, arXiv: 2112.03427 , doi:10.54550/ECA2022V2S3R20

Further reading