Zeoform

Last updated

Zeoform is a material developed by the Australian company, Zeo IP Pty. It is derived from water and cellulose, [1] specifically polymeric lignocellulosic fibres from industrial biomass into a structural material suitable for various applications in the industrial sector. It is claimed(it is not verified yet) to be non-toxic, biodegradable, and that it could replace many forms of hard plastics, synthetic compounds and other polymers (which may be harmful to the environment). [2] [3]

Contents

History

The original discovery of its basis occurred in 1897 by a German company M.M.Rotten in Berlin, patenting a method to produce a natural material utilizing cellulose. Almost 100 years later, three material researchers made advancements on the process that is the basis for Zeoform. This led to the creation, in 2005, of an Australian company that manufactured Artesanal products from the material. [4]

Production

Zeoform is derived from lignocellulosic biomass, such as hemp, cotton, bamboo, sisal, jute, palm, coconut and other cellulose feedstock. [5] [6] It is made without any glues, binders, chemicals or synthetics. The fundamental chemistry (and patented formula) causes a fibrillation (feathering) of cellulose micro-fibres (in water), then physical ‘entanglement’ and hydroxyl bonding through evaporation. [7] Done correctly, it results in a super-strong, highly durable, consistent material that emulates wood & wood composites, resin composites, fibreglass and many hard plastics. Zeoform can be produced with various qualities – from light styrofoam to dense ebony. The material is sustainable, compostable and sequesters carbon. [8]

Applications

Zeoform can be used as a replacement for conventional materials in hundreds of industries, including construction grade flat sheets and curved panels to replace MDF, Masonite, Formica, Corian and other synthetic composites. Zeoform can be sprayed, molded, pressed, laminated or formed using manual and mechanical processes. It can be produced in quantities ranging from small cottage industry to fully automated and robotic mass production. [9] [10]

See also

Related Research Articles

<span class="mw-page-title-main">Cellulose</span> Polymer of glucose and structural component of cell wall of plants and green algae

Cellulose is an organic compound with the formula (C
6
H
10
O
5
)
n
, a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell wall of green plants, many forms of algae and the oomycetes. Some species of bacteria secrete it to form biofilms. Cellulose is the most abundant organic polymer on Earth. The cellulose content of cotton fiber is 90%, that of wood is 40–50%, and that of dried hemp is approximately 57%.

<span class="mw-page-title-main">Biodegradation</span> Decomposition by living organisms

Biodegradation is the breakdown of organic matter by microorganisms, such as bacteria and fungi. It is generally assumed to be a natural process, which differentiates it from composting. Composting is a human-driven process in which biodegradation occurs under a specific set of circumstances.

<span class="mw-page-title-main">Fiber</span> Natural or synthetic substance made of long, thin filaments

Fiber or fibre is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate fibers, for example carbon fiber and ultra-high-molecular-weight polyethylene.

Synthetic fibers or synthetic fibres are fibers made by humans through chemical synthesis, as opposed to natural fibers that are directly derived from living organisms, such as plants or fur from animals. They are the result of extensive research by scientists to replicate naturally occurring animal and plant fibers. In general, synthetic fibers are created by extruding fiber-forming materials through spinnerets, forming a fiber. These are called synthetic or artificial fibers. The word polymer comes from a Greek prefix "poly" which means "many" and suffix "mer" which means "single units"..

Polymer chemistry is a sub-discipline of chemistry that focuses on the structures of chemicals, chemical synthesis, and chemical and physical properties of polymers and macromolecules. The principles and methods used within polymer chemistry are also applicable through a wide range of other chemistry sub-disciplines like organic chemistry, analytical chemistry, and physical chemistry. Many materials have polymeric structures, from fully inorganic metals and ceramics to DNA and other biological molecules. However, polymer chemistry is typically related to synthetic and organic compositions. Synthetic polymers are ubiquitous in commercial materials and products in everyday use, such as plastics, and rubbers, and are major components of composite materials. Polymer chemistry can also be included in the broader fields of polymer science or even nanotechnology, both of which can be described as encompassing polymer physics and polymer engineering.

<span class="mw-page-title-main">Wood-plastic composite</span> Composite materials made of wood fiber and thermoplastics

Wood-plastic composites (WPCs) are composite materials made of wood fiber/wood flour and thermoplastic(s) such as polythene (PE), polypropylene (PP), polyvinyl chloride (PVC), or polylactic acid (PLA).

Bioplastics are plastic materials produced from renewable biomass sources, such as vegetable fats and oils, corn starch, straw, woodchips, sawdust, recycled food waste, etc. Some bioplastics are obtained by processing directly from natural biopolymers including polysaccharides and proteins, while others are chemically synthesised from sugar derivatives and lipids from either plants or animals, or biologically generated by fermentation of sugars or lipids. In contrast, common plastics, such as fossil-fuel plastics are derived from petroleum or natural gas.

<span class="mw-page-title-main">Natural fiber</span> Fibers obtained from natural sources such as plants, animals or minerals without any synthesizing

Natural fibers or natural fibres are fibers that are produced by geological processes, or from the bodies of plants or animals. They can be used as a component of composite materials, where the orientation of fibers impacts the properties. Natural fibers can also be matted into sheets to make paper or felt.

<span class="mw-page-title-main">Lignocellulosic biomass</span>

Lignocellulose refers to plant dry matter (biomass), so called lignocellulosic biomass. It is the most abundantly available raw material on the Earth for the production of biofuels. It is composed of two kinds of carbohydrate polymers, cellulose and hemicellulose, and an aromatic-rich polymer called lignin. Any biomass rich in cellulose, hemicelluloses, and lignin are commonly referred to as lignocellulosic biomass. Each component has a distinct chemical behavior. Being a composite of three very different components makes the processing of lignocellulose challenging. The evolved resistance to degradation or even separation is referred to as recalcitrance. Overcoming this recalcitrance to produce useful, high value products requires a combination of heat, chemicals, enzymes, and microorganisms. These carbohydrate-containing polymers contain different sugar monomers and they are covalently bound to lignin.

<span class="mw-page-title-main">Biodegradable plastic</span> Plastics that can be decomposed by the action of living organisms

Biodegradable plastics are plastics that can be decomposed by the action of living organisms, usually microbes, into water, carbon dioxide, and biomass. Biodegradable plastics are commonly produced with renewable raw materials, micro-organisms, petrochemicals, or combinations of all three.

<span class="mw-page-title-main">Biocomposite</span>

A biocomposite is a composite material formed by a matrix (resin) and a reinforcement of natural fibers. Environmental concern and cost of synthetic fibres have led the foundation of using natural fibre as reinforcement in polymeric composites. The matrix phase is formed by polymers derived from renewable and nonrenewable resources. The matrix is important to protect the fibers from environmental degradation and mechanical damage, to hold the fibers together and to transfer the loads on it. In addition, biofibers are the principal components of biocomposites, which are derived from biological origins, for example fibers from crops, recycled wood, waste paper, crop processing byproducts or regenerated cellulose fiber (viscose/rayon). The interest in biocomposites is rapidly growing in terms of industrial applications and fundamental research, due to its great benefits. Biocomposites can be used alone, or as a complement to standard materials, such as carbon fiber. Advocates of biocomposites state that use of these materials improve health and safety in their production, are lighter in weight, have a visual appeal similar to that of wood, and are environmentally superior.

<span class="mw-page-title-main">Bioeconomy</span> Economic activity focused on biotechnology

Biobased economy, bioeconomy or biotechonomy is economic activity involving the use of biotechnology and biomass in the production of goods, services, or energy. The terms are widely used by regional development agencies, national and international organizations, and biotechnology companies. They are closely linked to the evolution of the biotechnology industry and the capacity to study, understand, and manipulate genetic material that has been possible due to scientific research and technological development. This includes the application of scientific and technological developments to agriculture, health, chemical, and energy industries.

Polymer engineering is generally an engineering field that designs, analyses, and modifies polymer materials. Polymer engineering covers aspects of the petrochemical industry, polymerization, structure and characterization of polymers, properties of polymers, compounding and processing of polymers and description of major polymers, structure property relations and applications.

<span class="mw-page-title-main">Biodegradable polymer</span>

Biodegradable polymers are a special class of polymer that breaks down after its intended purpose by bacterial decomposition process to result in natural byproducts such as gases (CO2, N2), water, biomass, and inorganic salts. These polymers are found both naturally and synthetically made, and largely consist of ester, amide, and ether functional groups. Their properties and breakdown mechanism are determined by their exact structure. These polymers are often synthesized by condensation reactions, ring opening polymerization, and metal catalysts. There are vast examples and applications of biodegradable polymers.

<span class="mw-page-title-main">Bamboo textile</span> Textile made from various parts of the bamboo plant

Bamboo textile is any cloth, yarn or clothing made from bamboo fibres. While historically used only for structural elements, such as bustles and the ribs of corsets, in recent years different technologies have been developed that allow bamboo fibre to be used for a wide range of textile and fashion applications.

Cellulose fibers are fibers made with ethers or esters of cellulose, which can be obtained from the bark, wood or leaves of plants, or from other plant-based material. In addition to cellulose, the fibers may also contain hemicellulose and lignin, with different percentages of these components altering the mechanical properties of the fibers.

<span class="mw-page-title-main">Biodegradable bag</span> Bag capable of being decomposed

Biodegradable bags are bags that are capable of being decomposed by bacteria or other living organisms.

<span class="mw-page-title-main">Piñatex</span> Pineapple-based vegetable leather

Piñatex is a non-biodegradable leather alternative made from cellulose fibres extracted from pineapple leaves, PLA, and petroleum-based resin. Piñatex was developed by Dr Carmen Hijosa and first presented at the PhD graduate exhibition at the Royal College of Art, London. Piñatex is manufactured and distributed by Hijosa's company Ananas Anam Ltd.

Mubarak Ahmad Khan is a Bangladeshi scientist who has been doing research into jute's commercial uses and possibilities. According to the science-based research database, Scopus, he is considered to be the leading scientist in the study of jute worldwide. He is currently serving as the Scientific Advisor of Bangladesh Jute Mills corporation (BJMC). Among his inventions are the Sonali Bag, Jutin, and helmets and tiles made from jute.

<span class="mw-page-title-main">Amar K. Mohanty</span> Material scientist and biomaterial engineer

Amar K. Mohanty is a material scientist and biobased material engineer, academic and author. He is a Professor and Distinguished Research Chair in Sustainable Biomaterials at the Ontario Agriculture College and is the Director of the Bioproducts Discovery and Development Centre at the University of Guelph.

References

  1. "Startup Develops Eco-Friendly Material to Replace Wood and Plastic". triplepundit.com. October 16, 2013. Retrieved 2014-05-27.
  2. "Eco Monday: Zeoform, the New Miracle Eco-Plastic?". redesignrevolution.com. October 21, 2013. Retrieved 2014-05-27.
  3. "Zeoform: The eco-friendly building material of the future?". gizmag.com. August 29, 2013. Retrieved 2014-05-27.
  4. "ZEOFORM History". Zeoform.com. Retrieved 2014-05-27.{{cite web}}: CS1 maint: url-status (link)
  5. "6 amazing technologies coming soon". timesofindia.indiatimes.com. January 12, 2014. Retrieved 2014-05-27.
  6. "A revolutionary new eco-material gets a Kickstart". treehugger.com. October 22, 2013. Retrieved 2014-05-27.
  7. "Is this the Holy Grail of Eco-Materials?". ecopreneurist.com. 2013-10-07. Retrieved 2014-05-27.
  8. "Beyond plastic: creating sustainable materials from recycled waste". theguardian.com. 7 January 2014. Retrieved 2014-05-27.
  9. "Australian company Zeo develops eco-friendly building material that has the potential to be the world's new plastic". australianmanufacturing.com.au . Retrieved 2014-05-27.
  10. "Zeoform: A New Plastic That Turns Hemp Into Almost Anything". leafscience. 19 November 2013. Retrieved 2014-05-27.