Zero-phonon line and phonon sideband

Last updated
Figure 1. Schematic representation of the absorption line shape of an electronic excitation. The narrow component at the frequency o' is the zero-phonon line and the broader feature is the phonon sideband. In emission, the relative positions of the two components are mirrored about the center of the zero-phonon line at o'. Line-shape.png
Figure 1. Schematic representation of the absorption line shape of an electronic excitation. The narrow component at the frequency ω is the zero-phonon line and the broader feature is the phonon sideband. In emission, the relative positions of the two components are mirrored about the center of the zero-phonon line at ω.

The zero-phonon line and the phonon sideband jointly constitute the line shape of individual light absorbing and emitting molecules (chromophores) embedded into a transparent solid matrix. When the host matrix contains many chromophores, each will contribute a zero-phonon line and a phonon sideband to the absorption and emission spectra. The spectra originating from a collection of identical chromophores in a matrix is said to be inhomogeneously broadened because each chromophore is surrounded by a somewhat different matrix environment which modifies the energy required for an electronic transition. In an inhomogeneous distribution of chromophores, individual zero-phonon line and phonon sideband positions are therefore shifted and overlapping.

Contents

Figure 1 shows the typical line shape for electronic transitions of individual chromophores in a solid matrix. The zero-phonon line is located at a frequency ω’ determined by the intrinsic difference in energy levels between ground and excited state as well as by the local environment. The phonon sideband is shifted to a higher frequency in absorption and to a lower frequency in fluorescence. The frequency gap Δ between the zero-phonon line and the peak of the phonon side band is determined by Franck–Condon principles.

The distribution of intensity between the zero-phonon line and the phonon side band is strongly dependent on temperature. At room temperature there is enough thermal energy to excite many phonons and the probability of zero-phonon transition is close to zero. For organic chromophores in organic matrices, the probability of a zero-phonon electronic transition only becomes likely below about 40 kelvins, but depends also on the strength of coupling between the chromophore and the host lattice.

Energy diagram

Figure 2. Energy diagram of an electronic transition with phonon coupling along the configurational coordinate
q
i
{\displaystyle q_{i}}
, a normal mode of the lattice. The upwards arrows represent absorption without phonons and with three phonons. The downwards arrows represent the symmetric process in emission. Phonon Energy Diagram.svg
Figure 2. Energy diagram of an electronic transition with phonon coupling along the configurational coordinate , a normal mode of the lattice. The upwards arrows represent absorption without phonons and with three phonons. The downwards arrows represent the symmetric process in emission.
Figure 3. Representation of three lattice normal modes (i, j, k) and how their intensities combine at the zero-phonon frequency, but are distributed within the phonon side band due to their different characteristic harmonic oscillator frequencies O. Lattice-modes.png
Figure 3. Representation of three lattice normal modes (i, j, k) and how their intensities combine at the zero-phonon frequency, but are distributed within the phonon side band due to their different characteristic harmonic oscillator frequencies Ω.

The transition between the ground and the excited state is based on the Franck–Condon principle, that the electronic transition is very fast compared with the motion in the lattice. The energy transitions can then be symbolized by vertical arrows between the ground and excited state, that is, there is no motion along the configurational coordinates during the transition. Figure 2 is an energy diagram for interpreting absorption and emission with and without phonons in terms of the configurational coordinate . The energy transitions originate at the lowest phonon energy level of the electronic states. As represented in the figure, the largest wavefunction overlap (and therefore largest transition probability) occurs when the photon energy is equal to the energy difference between the two electronic states () plus three quanta of lattice mode vibrational energy (). This three-phonon transition is mirrored in emission when the excited state quickly decays to its zero-point lattice vibration level by means of a radiationless process, and from there to the ground state via photon emission. The zero-phonon transition is depicted as having a lower wavefunction overlap and therefore a lower transition probability.

In addition to the Franck-Condon assumption, three other approximations are commonly assumed and are implicit in the figures. The first is that each lattice vibrational mode is well described by a quantum harmonic oscillator. This approximation is implied in the parabolic shape of the potential wells of Figure 2, and in the equal energy spacing between phonon energy levels. The second approximation is that only the lowest (zero-point) lattice vibration is excited. This is called the low temperature approximation and means that electronic transitions do not originate from any of the higher phonon levels. The third approximation is that the interaction between the chromophore and the lattice is the same in both the ground and the excited state. Specifically, the harmonic oscillator potential is equal in both states. This approximation, called linear coupling, is represented in Figure 2 by two equally shaped parabolic potentials and by equally spaced phonon energy levels in both the ground and excited states.

The strength of the zero-phonon transition arises in the superposition of all of the lattice modes. Each lattice mode has a characteristic vibrational frequency which leads to an energy difference between phonons . When the transition probabilities for all the modes are summed, the zero-phonon transitions always add at the electronic origin (), while the transitions with phonons contribute at a distribution of energies. Figure 3 illustrates the superposition of transition probabilities of several lattice modes. The phonon transition contributions from all lattice modes constitute the phonon sideband.

The frequency separation between the maxima of the absorption and fluorescence phonon sidebands is the phonon contribution to the Stokes’ shift.

Line shape

The shape of the zero-phonon line is Lorentzian with a width determined by the excited state lifetime T10 according to the Heisenberg uncertainty principle. Without the influence of the lattice, the natural line width (full width at half maximum) of the chromophore is γ0 = 1/T10 . The lattice reduces the lifetime of the excited state by introducing radiationless decay mechanisms. At absolute zero the lifetime of the excited state influenced by the lattice is T1. Above absolute zero, thermal motions will introduce random perturbations to the chromophores local environment. These perturbations shift the energy of the electronic transition, introducing a temperature dependent broadening of the line width. The measured width of a single chromophore's zero phonon line, the homogeneous line width, is then γh(T) ≥ 1/T1 .

The line shape of the phonon side band is that of a Poisson distribution as it expresses a discrete number of events, electronic transitions with phonons, during a period of time. At higher temperatures, or when the chromophore interacts strongly with the matrix, the probability of multiphonon is high and the phonon side band approximates a Gaussian distribution.

The distribution of intensity between the zero-phonon line and the phonon sideband is characterized by the Debye-Waller factor α.

Analogy to the Mössbauer effect

The zero-phonon line is an optical analogy to the Mössbauer lines, which originate in the recoil-free emission or absorption of gamma rays from the nuclei of atoms bound in a solid matrix. In the case of the optical zero-phonon line, the position of the chromophore is the physical parameter that may be perturbed, whereas in the gamma transition, the momenta of the atoms may be changed. More technically, the key to the analogy is the symmetry between position and momentum in the Hamiltonian of the quantum harmonic oscillator. Both position and momentum contribute in the same way (quadratically) to the total energy.

See also

Related Research Articles

Spontaneous emission is the process in which a quantum mechanical system transits from an excited energy state to a lower energy state and emits a quantized amount of energy in the form of a photon. Spontaneous emission is ultimately responsible for most of the light we see all around us; it is so ubiquitous that there are many names given to what is essentially the same process. If atoms are excited by some means other than heating, the spontaneous emission is called luminescence. For example, fireflies are luminescent. And there are different forms of luminescence depending on how excited atoms are produced. If the excitation is affected by the absorption of radiation the spontaneous emission is called fluorescence. Sometimes molecules have a metastable level and continue to fluoresce long after the exciting radiation is turned off; this is called phosphorescence. Figurines that glow in the dark are phosphorescent. Lasers start via spontaneous emission, then during continuous operation work by stimulated emission.

The Mössbauer effect, or recoilless nuclear resonance fluorescence, is a physical phenomenon discovered by Rudolf Mössbauer in 1958. It involves the resonant and recoil-free emission and absorption of gamma radiation by atomic nuclei bound in a solid. Its main application is in Mössbauer spectroscopy.

Photoluminescence Light emission from substances after they absorb photons

Photoluminescence is light emission from any form of matter after the absorption of photons. It is one of many forms of luminescence and is initiated by photoexcitation, hence the prefix photo-. Following excitation, various relaxation processes typically occur in which other photons are re-radiated. Time periods between absorption and emission may vary: ranging from short femtosecond-regime for emission involving free-carrier plasma in inorganic semiconductors up to milliseconds for phosphoresence processes in molecular systems; and under special circumstances delay of emission may even span to minutes or hours.

Phonon Quasiparticle of mechanical vibrations

In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. Often referred to as a quasiparticle, it is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles. Phonons can be thought of as quantized sound waves, similar to photons as quantized light waves.

Raman scattering Inelastic scattering of photons

Raman scattering or the Raman effect is the inelastic scattering of photons by matter, meaning that there is both an exchange of energy and a change in the light's direction. Typically this effect involves vibrational energy being gained by a molecule as incident photons from a visible laser are shifted to lower energy. This is called normal Stokes Raman scattering. The effect is exploited by chemists and physicists to gain information about materials for a variety of purposes by performing various forms of Raman spectroscopy. Many other variants of Raman spectroscopy allow rotational energy to be examined and electronic energy levels may be examined if an X-ray source is used in addition to other possibilities. More complex techniques involving pulsed lasers, multiple laser beams and so on are known.

Polaron Quasiparticle in condensed matter physics

A polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was proposed by Lev Landau in 1933 and Solomon Pekar in 1946 to describe an electron moving in a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen the charge of an electron, known as a phonon cloud. For comparison of the models proposed in these papers see M. I. Dykman and E. I. Rashba, The roots of polaron theory, Physics Today 68, 10 (2015). This lowers the electron mobility and increases the electron's effective mass.

Resolved sideband cooling is a laser cooling technique allowing cooling of tightly bound atoms and ions beyond the Doppler cooling limit, potentially to their motional ground state. Aside from the curiosity of having a particle at zero point energy, such preparation of a particle in a definite state with high probability (initialization) is an essential part of state manipulation experiments in quantum optics and quantum computing.

Resonance Raman spectroscopy is a Raman spectroscopy technique in which the incident photon energy is close in energy to an electronic transition of a compound or material under examination. The frequency coincidence can lead to greatly enhanced intensity of the Raman scattering, which facilitates the study of chemical compounds present at low concentrations.

Absorption band Range on the electromagnetic spectrum

According to quantum mechanics, atoms and molecules can only hold certain defined quantities of energy, or exist in specific states. When such quanta of electromagnetic radiation are emitted or absorbed by an atom or molecule, energy of the radiation changes the state of the atom or molecule from an initial state to a final state. An absorption band is a range of wavelengths, frequencies or energies in the electromagnetic spectrum which are characteristic of a particular transition from initial to final state in a substance.

Franck–Condon principle

The Franck–Condon principle is a rule in spectroscopy and quantum chemistry that explains the intensity of vibronic transitions. Vibronic transitions are the simultaneous changes in electronic and vibrational energy levels of a molecule due to the absorption or emission of a photon of the appropriate energy. The principle states that during an electronic transition, a change from one vibrational energy level to another will be more likely to happen if the two vibrational wave functions overlap more significantly.

Sound amplification by stimulated emission of radiation

Sound amplification by stimulated emission of radiation (SASER) refers to a device that emits acoustic radiation. It focuses sound waves in a way that they can serve as accurate and high-speed carriers of information in many kinds of applications—similar to uses of laser light.

Shpolskii matrix

Shpolskii systems are low-temperature host–guest systems – they are typically rapidly frozen solutions of polycyclic aromatic hydrocarbons in suitable low molecular weight normal alkanes. The emission and absorption spectra of lowest energy electronic transitions in the Shpolskii systems exhibit narrow lines instead of the inhomogeneously broadened features normally associated with spectra of chromophores in liquids and amorphous solids. The effect was first described by Eduard Shpolskii in the 1950s and 1960's in the journals Transactions of the U.S.S.R. Academy of Sciences and Soviet Physics Uspekhi.

The McCumber relation is a relationship between the effective cross-sections of absorption and emission of light in the physics of solid-state lasers. It is named after Dean McCumber, who proposed the relationship in 1964.

Surface phonon

In solid state physics, a surface phonon is the quantum of a lattice vibration mode associated with a solid surface. Similar to the ordinary lattice vibrations in a bulk solid, the nature of surface vibrations depends on details of periodicity and symmetry of a crystal structure. Surface vibrations are however distinct from the bulk vibrations, as they arise from the abrupt termination of a crystal structure at the surface of a solid. Knowledge of surface phonon dispersion gives important information related to the amount of surface relaxation, the existence and distance between an adsorbate and the surface, and information regarding presence, quantity, and type of defects existing on the surface.

Free carrier absorption occurs when a material absorbs a photon, and a carrier is excited from an already-excited state to another, unoccupied state in the same band. This intraband absorption is different from interband absorption because the excited carrier is already in an excited band, such as an electron in the conduction band or a hole in the valence band, where it is free to move. In interband absorption, the carrier starts in a fixed, nonconducting band and is excited to a conducting one.

Lyddane–Sachs–Teller relation

In condensed matter physics, the Lyddane–Sachs–Teller relation determines the ratio of the natural frequency of longitudinal optic lattice vibrations (phonons) of an ionic crystal to the natural frequency of the transverse optical lattice vibration for long wavelengths. The ratio is that of the static permittivity to the permittivity for frequencies in the visible range .

The quasi-harmonic approximation is a phonon-based model of solid-state physics used to describe volume-dependent thermal effects, such as the thermal expansion. It is based on the assumption that the harmonic approximation holds for every value of the lattice constant, which is to be viewed as an adjustable parameter.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

Vibronic spectroscopy is a branch of molecular spectroscopy concerned with vibronic transitions: the simultaneous changes in electronic and vibrational energy levels of a molecule due to the absorption or emission of a photon of the appropriate energy. In the gas phase vibronic transitions are accompanied by changes in rotational energy also. Vibronic spectra of diatomic molecules have been analysed in detail; emission spectra are more complicated than absorption spectra. The intensity of allowed vibronic transitions is governed by the Franck–Condon principle. Vibronic spectroscopy may provide information, such as bond-length, on electronic excited states of stable molecules. It has also been applied to the study of unstable molecules such as dicarbon, C2, in discharges, flames and astronomical objects.

The semiconductor luminescence equations (SLEs) describe luminescence of semiconductors resulting from spontaneous recombination of electronic excitations, producing a flux of spontaneously emitted light. This description established the first step toward semiconductor quantum optics because the SLEs simultaneously includes the quantized light–matter interaction and the Coulomb-interaction coupling among electronic excitations within a semiconductor. The SLEs are one of the most accurate methods to describe light emission in semiconductors and they are suited for a systematic modeling of semiconductor emission ranging from excitonic luminescence to lasers.

References