Zometool

Last updated

Zometool is a construction set toy that had been created by a collaboration of Steve Baer (the creator of Zome architecture), artist Clark Richert, Paul Hildebrandt (the present CEO of Zometool), and co-inventor Marc Pelletier. [1] [2] [3] It is manufactured by Zometool, Inc. According to the company, Zometool was primarily designed for kids. Zometool has also been used in other fields including mathematics and physics. For example, aperiodic tilings such as Penrose tilings can be modeled using Zometool. The learning tool was designed by inventor-designer Steve Baer, his wife Holly and others.

Contents

Rhombicosidodecahedron Small rhombicosidodecahedron.png
Rhombicosidodecahedron

The Zometool plastic construction set toy is produced by a privately owned company of the same name, based outside of Longmont, Colorado, and which evolved out of Baer's company ZomeWorks. Its elements consist of small connector nodes and struts of various colors. The overall shape of a connector node is that of a non-uniform small rhombicosidodecahedron with each face replaced by a small hole. The ends of the struts are designed to fit in the holes of the connector nodes, allowing for syntheses of a variety of structures. The idea of shape-coding the three types of struts was developed by Marc Pelletier and Paul Hildebrandt. To create the "balls," or nodes, Pelletier and Hildebrandt invented a system of 62 hydraulic pins that came together to form a mold. The first connector node emerged from their mold on April 1, 1992. [3]

In the years since 1992, Zometool has extended its product line, though the basic design of the connector node has not changed so all parts to date are compatible with each-other. From 1992 until 2000, Zometool produced kits with connector nodes and blue, yellow, and red struts. In 2000, Zometool introduced green struts, prompted by French architect Fabien Vienne, which can be used to construct the regular tetrahedron and octahedron. In 2003, Zometool changed the style of the struts slightly. The struts "with clicks" have a different surface texture and they also have longer nibs which allow for a more robust connection between connector node and strut.

Characteristics

Zometool strut and ball Zome vertices.jpg
Zometool strut and ball

The color of a Zometool strut is associated with its cross section and also with the shape of the hole of the connector node in which it fits. Each blue strut has a rectangular cross section, each yellow strut has a triangular cross section, and each red strut has a pentagonal cross section. The cross section of a green strut is a rhombus of √2 aspect ratio, but as the connector nodes do not include holes at the required positions, the green struts instead fit into any of the 12 pentagonal holes with 5 possible orientations per hole, 60 possible orientations in all; using them is not as straightforward as the other struts.

At their midpoints, each of the yellow and red struts has a twist where the cross-sectional shape reverses. This design feature forces the connector nodes on the ends of the strut to have the same orientation. Similarly, the cross section of the blue strut is a non-square rectangle, again ensuring that the two nodes on the ends have the same orientation. Instead of a twist, the green struts have two bends which allow them to fit into the pentagonal holes of the connector node which are at a slight offset from the strut's axis.[ citation needed ]

Among other places, the word zome comes from the term zone. The zome system allows no more than 61 zones. The cross-sectional shapes correspond to colors, and in turn these correspond to zone colors. Hence the zome system has 15 blue zones, 10 yellow zones, 6 red zones, and 30 green zones. Two shapes are associated with blue. The blue struts with a rectangular cross section are designed to lie in the same zones as the blue struts, but they are half the length of a blue strut; hence these struts are often called "half-blue" (and were originally made in a light blue color). The blue-green struts with a rhombic cross section lie in the same zones as the green struts, but they are designed so that the ratio of a rhombic blue-green strut to a blue strut is 1:1 (as opposed to the green strut's √2:1). It is important to understand that, due to this length ratio, the blue-green struts having a rhombic cross section do not mathematically belong to the zome system.[ citation needed ]

Mathematics of Zometools

The strut lengths follow a mathematical pattern: For any color, there exists lengths such that they increase by a constant factor of approximately 1.618, a number that is yield of what is called the “golden ratio" which is represented by Greek letter phi ( or ). [4] The golden ratio is a ratio such that the sum of two quantities is equal to the ratio of the same quantities, based on the largest value of the two numbers.

Thus,

An application of the golden ratio for the zome system is that for each color,

there exists a length such that a long strut length equals the length of a medium strut connected to a short strut.

In other words, the length of the long strut equals the sum of the medium strut length and the a short strut length.

Definition

A zome is defined in terms of the vector space , equipped with the standard inner product, also known as 3-dimensional Euclidean space.[ citation needed ]

Let denote the golden ratio and let denote the symmetry group of the configuration of vectors , , and . The group , an example of a Coxeter group, is known as the icosahedral group because it is the symmetry group of a regular icosahedron having these vectors as its vertices. The subgroup of consisting of the elements with determinant 1 (i.e. the rotations) is isomorphic to .

Define the "standard blue vectors" as the -orbit of the vector . Define the "standard yellow vectors" as the -orbit of the vector . Define the "standard red vectors" as the -orbit of the vector . A "strut" of the zome system is any vector which can be obtained from the standard vectors described above by scaling by any power , where is an integer. A "node" of the zome system is any element of the subgroup of generated by the struts. Finally, the "zome system" is the set of all pairs , where is a set of nodes and is a set of pairs such that and are in and the difference is a strut.

There are then 30, 20, and 12 standard vectors having the colors blue, yellow, and red, respectively. Correspondingly, the stabilizer subgroup of a blue, yellow, or red strut is isomorphic to the cyclic group of order 2, 3, or 5, respectively. Hence, one may also describe the blue, yellow, and red struts as "rectangular", "triangular", and "pentagonal", respectively.

The zome system may be extended by adjoining green vectors. The "standard green vectors" comprise the -orbit of the vector and a "green strut" as any vector which can be obtained by scaling a standard green vector by any integral power . As above, one may check that there are =60 standard green vectors. One may then enhance the zome system by including these green struts. Doing this does not affect the set of nodes.

The abstract zome system defined above is significant because of the following fact: Every connected zome model has a faithful image in the zome system. The converse of this fact is only partially true, but this is due only to the laws of physics. For example, the radius of a zometool node is positive (as opposed to a node being a single point mathematically), so one cannot make a zometool model where two nodes are separated by an arbitrarily small, prescribed distance. Similarly, only a finite number of lengths of struts will ever be manufactured, and a green strut cannot be placed directly adjacent to a red strut or another green strut with which it shares the same hole (even though they are mathematically distinct).[ citation needed ]

As a modeling system

Compound of five cubes, rendered in ZomeCAD Zome-Five-Cubes.png
Compound of five cubes, rendered in ZomeCAD
Compound of five tetrahedra, rendered in vZome Fivetetras.jpg
Compound of five tetrahedra, rendered in vZome

The zome system is especially useful for modeling 1-dimensional skeletons of highly symmetric objects in 3- and 4-dimensional Euclidean space. The most prominent among these are the five Platonic Solids, and the 4-dimensional polytopes related to the 120-cell and the 600-cell. However, many other mathematical objects may be modeled using the zome system, including:[ citation needed ]

The uses of zome are not restricted to pure mathematics. Other uses include the study of engineering problems, especially steel-truss structures, the study of some molecular, nanotube, and viral structures, and to make soap film surfaces.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Golden ratio</span> Number, approximately 1.618

In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if

<span class="mw-page-title-main">Regular icosahedron</span> Polyhedron with 20 regular triangular faces

In geometry, the regular icosahedron is convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with regular faces to each of its pentagonal faces, or by putting points onto the cube. The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of the Platonic solid and of the deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron.

<span class="mw-page-title-main">Kepler–Poinsot polyhedron</span> Any of 4 regular star polyhedra

In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra.

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates determined by distance and angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<i>n</i>-sphere Generalized sphere of dimension n (mathematics)

In mathematics, an n-sphere or hypersphere is an n-dimensional generalization of the 1-dimensional circle and 2-dimensional sphere to any non-negative integer n. The n-sphere is the setting for n-dimensional spherical geometry.

<span class="mw-page-title-main">Unit vector</span> Vector of length one

In mathematics, a unit vector in a normed vector space is a vector of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in .

<span class="mw-page-title-main">Poisson's equation</span> Expression frequently encountered in mathematical physics, generalization of Laplaces equation

Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson.

<span class="mw-page-title-main">Fermat's spiral</span> Spiral that surrounds equal area per turn

A Fermat's spiral or parabolic spiral is a plane curve with the property that the area between any two consecutive full turns around the spiral is invariant. As a result, the distance between turns grows in inverse proportion to their distance from the spiral center, contrasting with the Archimedean spiral and the logarithmic spiral. Fermat spirals are named after Pierre de Fermat.

<span class="mw-page-title-main">Golden spiral</span> Self-similar curve related to golden ratio

In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. That is, a golden spiral gets wider by a factor of φ for every quarter turn it makes.

<span class="mw-page-title-main">Rhombicosidodecahedron</span> Archimedean solid

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

<span class="mw-page-title-main">Rhombic triacontahedron</span> Catalan solid with 30 faces

The rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Catalan solid, and the dual polyhedron of the icosidodecahedron. It is a zonohedron.

<span class="mw-page-title-main">Snub 24-cell</span>

In geometry, the snub 24-cell or snub disicositetrachoron is a convex uniform 4-polytope composed of 120 regular tetrahedral and 24 icosahedral cells. Five tetrahedra and three icosahedra meet at each vertex. In total it has 480 triangular faces, 432 edges, and 96 vertices. One can build it from the 600-cell by diminishing a select subset of icosahedral pyramids and leaving only their icosahedral bases, thereby removing 480 tetrahedra and replacing them with 24 icosahedra.

<span class="mw-page-title-main">Regular dodecahedron</span> Polyhedron with 12 regular pentagonal faces

A regular dodecahedron or pentagonal dodecahedron is a dodecahedron that is regular, which is composed of 12 regular pentagonal faces, three meeting at each vertex. It is one of the five Platonic solids. It has 12 faces, 20 vertices, 30 edges, and 160 diagonals. It is represented by the Schläfli symbol {5,3}.

In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces.

<span class="mw-page-title-main">Euclidean plane</span> Geometric model of the planar projection of the physical universe

In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement.

<span class="mw-page-title-main">Medial rhombic triacontahedron</span> Polyhedron with 30 faces

In geometry, the medial rhombic triacontahedron is a nonconvex isohedral polyhedron. It is a stellation of the rhombic triacontahedron, and can also be called small stellated triacontahedron. Its dual is the dodecadodecahedron.

<span class="mw-page-title-main">Great rhombic triacontahedron</span> Polyhedron with 30 faces

In geometry, the great rhombic triacontahedron is a nonconvex isohedral, isotoxal polyhedron. It is the dual of the great icosidodecahedron (U54). Like the convex rhombic triacontahedron it has 30 rhombic faces, 60 edges and 32 vertices.

<span class="mw-page-title-main">Golden rhombus</span> Rhombus with diagonals in the golden ratio

In geometry, a golden rhombus is a rhombus whose diagonals are in the golden ratio:

<span class="mw-page-title-main">Bilinski dodecahedron</span> Polyhedron with 12 congruent golden rhombus faces

In geometry, the Bilinski dodecahedron is a convex polyhedron with twelve congruent golden rhombus faces. It has the same topology but a different geometry than the face-transitive rhombic dodecahedron. It is a parallelohedron.

Phase reduction is a method used to reduce a multi-dimensional dynamical equation describing a nonlinear limit cycle oscillator into a one-dimensional phase equation. Many phenomena in our world such as chemical reactions, electric circuits, mechanical vibrations, cardiac cells, and spiking neurons are examples of rhythmic phenomena, and can be considered as nonlinear limit cycle oscillators.

References

  1. Buhler-Allen, Amina (2019). "21st Century Space Frame System". In Akleman, Ergun; Bærentzen, Jakob Andreas; Polthier, Konrad (eds.). Hyperseeing 2018: Proceedings of SMI FASE (PDF). SMI Fabrication & Sculpting Event, Lisbon, 6–8 June 2018. International Society of the Arts, Mathematics, and Architecture.
  2. "Paul Hildebrandt | CEO at Zometool Inc. | F6S Member Profile". F6S. Retrieved 2024-01-30.
  3. 1 2 "About us". www.zometool.com. Retrieved 2024-01-30.
  4. The Mathematics of Zome Tom Davis http://www.geometer.org/mathcircles July 4, 2007

Further reading

Software