Zooamata

Last updated

Zooamata
Temporal range: early Paleocene to present
Ferae.png
The Perissodactyl.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Clade: Scrotifera
Clade: Pegasoferae
Clade: Zooamata
Waddell, 1999 [1]
Subgroups

Zooamata ("animal friends") is a proposal for a clade of mammals uniting the Ferae (carnivores and pangolins) with the Perissodactyla (odd-toed ungulates).

Zoomata was proposed as one of the competing arrangements for the interordinal relationships of placental mammals within Laurasiatheria. [1] It received support in a phylogenetic study using retroposon insertion analysis, where it was found to be the sister taxon to Chiroptera within a novel clade named Pegasoferae. [2] The Zooamata and Cetartiodactyla (even-toed ungulates and whales) together form Scrotifera.

The name of this clade is constructed from Greek and Latin to mean "animal friends", a reference to the inclusion of cats, dogs, and horses, all of which have been domesticated by humans.

Subsequent molecular studies have generally failed to support the proposal. [3] [4] [5] In particular, two recent phylogenomic studies analysing alternative theories for mammalian interordinal relationships concluded that Zooamata and Pegasoferae are not natural groupings. [6] [7] The competing proposal linking the Perissodactyla and Cetartiodactyla in a clade named Euungulata, as a sister to the Ferae, in Scrotifera received stronger support.

Phylogeny

The following cladogram shows the phylogenetic relationships of laurasiatherian mammals following Nishihara et al. (2006). [2]

  Laurasiatheria  

Eulipotyphla

  Scrotifera  

Artiodactyla

  Pegasoferae  

Chiroptera

 Zooamata 

Ferae

Perissodactyla

Related Research Articles

<span class="mw-page-title-main">Carnivora</span> Order of mammals

Carnivora is an order of placental mammals that have specialized in primarily eating flesh, whose members are formally referred to as carnivorans. The order Carnivora is the fifth largest order of mammals, comprising at least 279 species.

<span class="mw-page-title-main">Ungulate</span> Group of animals that walk on the tips of their toes or hooves

Ungulates are members of the diverse clade Euungulata which primarily consists of large mammals with hooves. Once part of the clade "Ungulata" along with the clade Paenungulata, "Ungulata" has since been determined to be a polyphyletic and thereby invalid clade based on molecular data. As a result, true ungulates had since been reclassified to the newer clade Euungulata in 2001 within the clade Laurasiatheria while Paenungulata has been reclassified to a distant clade Afrotheria. Living ungulates are divided into two orders: Perissodactyla including equines, rhinoceroses, and tapirs; and Artiodactyla including cattle, antelope, pigs, giraffes, camels, sheep, deer, and hippopotamuses, among others. Cetaceans such as whales, dolphins, and porpoises are also classified as artiodactyls, although they do not have hooves. Most terrestrial ungulates use the hoofed tips of their toes to support their body weight while standing or moving. Two other orders of ungulates, Notoungulata and Litopterna, both native to South America, became extinct at the end of the Pleistocene, around 12,000 years ago.

<span class="mw-page-title-main">Placentalia</span> Infraclass of mammals in the clade Eutheria

Placental mammals are one of the three extant subdivisions of the class Mammalia, the other two being Monotremata and Marsupialia. Placentalia contains the vast majority of extant mammals, which are partly distinguished from monotremes and marsupials in that the fetus is carried in the uterus of its mother to a relatively late stage of development. The name is something of a misnomer considering that marsupials also nourish their fetuses via a placenta, though for a relatively briefer period, giving birth to less developed young which are then nurtured for a period inside the mother's pouch. Placentalia represents the only living group within Eutheria, which contains all mammals more closely related to placentals than to marsupials.

<span class="mw-page-title-main">Afrotheria</span> Clade of mammals containing elephants and elephant shrews

Afrotheria is a clade of mammals, the living members of which belong to groups that are either currently living in Africa or of African origin: golden moles, elephant shrews, otter shrews, tenrecs, aardvarks, hyraxes, elephants, sea cows, and several extinct clades. Most groups of afrotheres share little or no superficial resemblance, and their similarities have only become known in recent times because of genetics and molecular studies. Many afrothere groups are found mostly or exclusively in Africa, reflecting the fact that Africa was an island continent from the Cretaceous until the early Miocene around 20 million years ago, when Afro-Arabia collided with Eurasia.

<span class="mw-page-title-main">Euarchontoglires</span> Superorder of mice, humans, their most recent common ancestor, and all its descendants

Euarchontoglires, synonymous with Supraprimates, is a clade and a superorder of mammals, the living members of which belong to one of the five following groups: rodents, lagomorphs, treeshrews, primates, and colugos.

<span class="mw-page-title-main">Euarchonta</span> Mammal grandorder containing treeshrews, colugos, and primates

The Euarchonta are a proposed grandorder of mammals: the order Scandentia (treeshrews), and its sister Primatomorpha mirorder, containing the Dermoptera or colugos and the primates.

<span class="mw-page-title-main">Laurasiatheria</span> Clade of mammals

Laurasiatheria is a superorder of placental mammals that groups together true insectivores (eulipotyphlans), bats (chiropterans), carnivorans, pangolins (pholidotes), even-toed ungulates (artiodactyls), odd-toed ungulates (perissodactyls), and all their extinct relatives. From systematics and phylogenetic perspectives, it is subdivided into order Eulipotyphla and clade Scrotifera. It is a sister group to Euarchontoglires with which it forms the magnorder Boreoeutheria. Laurasiatheria was discovered on the basis of the similar gene sequences shared by the mammals belonging to it; no anatomical features have yet been found that unite the group, although a few have been suggested such as a small coracoid process, a simplified hindgut and allantoic vessels that are large to moderate in size. The Laurasiatheria clade is based on DNA sequence analyses and retrotransposon presence/absence data. The superorder originated on the northern supercontinent of Laurasia, after it split from Gondwana when Pangaea broke up. Its last common ancestor is supposed to have lived between ca. 76 to 90 million years ago.

<span class="mw-page-title-main">Ferae</span> A clade of mammals consisting of Carnivores and Pholidotes

Ferae is a mirorder of placental mammals from grandorder Ferungulata, that groups together clades Pan-Carnivora, which includes modern carnivorans, and Pholidotamorpha, which includes pangolins.

<span class="mw-page-title-main">Atlantogenata</span> Clade of mammals

Atlantogenata is a proposed clade of placental mammals containing the cohorts or superorders Xenarthra and Afrotheria. These groups originated and radiated in the South American and African continents, respectively, presumably in the Cretaceous. Together with Boreoeutheria, they make up Eutheria. The monophyly of this grouping was supported by some genetic evidence.

<span class="mw-page-title-main">Epitheria</span> Clade of mammals

Epitherians comprise all the placental mammals except the Xenarthra. They are primarily characterized by having a stirrup-shaped stapes in the middle ear, which allows for passage of a blood vessel. This is in contrast to the column-shaped stapes found in marsupials, monotremes, and xenarthrans. They are also characterized by having a shorter fibula relative to the tibia.

Retrotransposon markers are components of DNA which are used as cladistic markers. They assist in determining the common ancestry, or not, of related taxa. The "presence" of a given retrotransposon in related taxa suggests their orthologous integration, a derived condition acquired via a common ancestry, while the "absence" of particular elements indicates the plesiomorphic condition prior to integration in more distant taxa. The use of presence/absence analyses to reconstruct the systematic biology of mammals depends on the availability of retrotransposons that were actively integrating before the divergence of a particular species.

<span class="mw-page-title-main">Boreoeutheria</span> Magnorder of mammals containing Laurasiatheria and Euarchontoglires

Boreoeutheria is a magnorder of placental mammals that groups together superorders Euarchontoglires and Laurasiatheria. With a few exceptions, male animals in the clade have a scrotum, an ancestral feature of the clade. The sub-clade Scrotifera was named after this feature.

<span class="mw-page-title-main">Ferungulata</span> Clade of mammals comprising carnivorans, pangolins, artiodactyls and perissodactyls

Ferungulata is a grandorder of placental mammals that groups together mirorder Ferae and clade Pan-Euungulata. It has existed in two guises, a traditional one based on morphological analysis and a revised one taking into account more recent molecular analyses. The Fereungulata is a sister group to the order Chiroptera (bats) and together they make clade Scrotifera.

<span class="mw-page-title-main">Pegasoferae</span> Group of mammals comprising horses, bats, carnivores, and pangolins, among others

Pegasoferae is a proposed clade of mammals based on genomic research in molecular systematics by Nishihara, Hasegawa and Okada (2006).

<span class="mw-page-title-main">Whippomorpha</span> Suborder of mammals

Whippomorpha or Cetancodonta is a group of artiodactyls that contains all living cetaceans and hippopotamuses. All Whippomorphs are descendants of the last common ancestor of Hippopotamus amphibius and Tursiops truncatus. This makes it a crown group. Whippomorpha is a suborder within the order Artiodactyla. The placement of Whippomorpha within Artiodactyla is a matter of some contention, as hippopotamuses were previously considered to be more closely related to Suidae (pigs) and Tayassuidae (peccaries). Most contemporary scientific phylogenetic and morphological research studies link hippopotamuses with cetaceans, and genetic evidence has overwhelmingly supported an evolutionary relationship between Hippopotamidae and Cetacea. Modern Whippomorphs all share a number of behavioural and physiological traits; such as a dense layer of subcutaneous fat and largely hairless bodies. They exhibit amphibious and aquatic behaviors and possess similar auditory structures.

<span class="mw-page-title-main">Artiofabula</span> Clade of mammals comprising pigs, cows, hippos, and whales, among others

Artiofabula is a clade made up of the Suina and the Cetruminantia. The clade was found in molecular phylogenetic analyses and contradicted traditional relationships based on morphological analyses.

<span class="mw-page-title-main">Exafroplacentalia</span> Proposed clade of placental mammals

Exafroplacentalia or Notolegia is a clade of placental mammals proposed in 2001 on the basis of molecular research.

<span class="mw-page-title-main">Scrotifera</span> Clade of mammals

Scrotifera is a clade of placental mammals that groups together grandorder Ferungulata, clade Apo-Chiroptera, other extinct members and their common ancestors. The clade Scrotifera is a sister group to the order Eulipotyphla based on evidence from molecular phylogenetics, and together they make superorder Laurasiatheria. The last common ancestor of Scrotifera is supposed to have diversified ca. 73.1 to 85.5 million years ago.

<span class="mw-page-title-main">Arctocyonia</span> Extinct clade of mammals

Arctocyonians are a clade of laurasiatherian mammals whose stratigraphic range runs from the Palaeocene to the Early Eocene epochs. They were among the earliest examples of major mammalian predators after the Cretaceous–Paleogene extinction event. While some classify arctocyonians as stem-artiodactyls, others have classified the group as members of Ferae. There are three families classified in the order: Arctocyonidae, Oxyclaenidae, and Quettacyonidae.

<span class="mw-page-title-main">Paenungulatomorpha</span>

Paenungulatomorpha is a clade of afrotherian mammals that can be characterized according to Gheerbrant et al. (2016):

by a mandibular retromolar fossa, the absence of hypocone, an ectoloph selenodont and linked to strong styles such as mesostyle in basal taxa, and a more or less developed pseudohypocone.

References

  1. 1 2 Waddell, Peter J.; Okada, Norihiro; Hasegawa, Masami (1999). "Towards Resolving the Interordinal Relationships of Placental Mammals". Systematic Biology . 48 (1): 1–5. doi: 10.1093/sysbio/48.1.1 . PMID   12078634.
  2. 1 2 Nishihara, H.; Hasegawa, M.; Okada, N. (2006). "Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions". Proceedings of the National Academy of Sciences of the United States of America. 103 (26): 9929–9934. doi:10.1073/pnas.0603797103. PMC   1479866 . PMID   16785431.
  3. Matthee, Conrad A.; Eick, Geeta; Willows-Munro, Sandi; Montgelard, Claudine; Pardini, Amanda T.; Robinson, Terence J. (2007). "Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics". Molecular Phylogenetics and Evolution . 42 (3): 827–837. doi:10.1016/j.ympev.2006.10.002. PMID   17101283.
  4. Springer, M. S.; Burk-Herrick, A.; Meredith, R.; Eizirik, E.; Teeling, E.; O'Brien, S. J.; Murphy, W. J. (2007). "The adequacy of morphology for reconstructing the early history of placental mammals". Systematic Biology. 56 (4): 673–684. doi: 10.1080/10635150701491149 . PMID   17661234.
  5. Kitazoe, Yasuhiro; Kishino, Hirohisa; Waddell, Peter J.; Nakajima, Noriaki; Okabayashi, Takahisa; Watabe, Teruaki; Okuhara, Yoshiyasu (2007). Hahn, Matthew (ed.). "Robust Time Estimation Reconciles Views of the Antiquity of Placental Mammals". PLoS ONE . 2 (4): e384. Bibcode:2007PLoSO...2..384K. doi: 10.1371/journal.pone.0000384 . PMC   1849890 . PMID   17440620.
  6. Zhou, Xuming; Xu, Shixia; Xu, Junxiao; Chen, Bingyao; Zhou, Kaiya; Yang, Guang (2011). "Phylogenomic Analysis Resolves the Interordinal Relationships and Rapid Diversification of the Laurasiatherian Mammals". Systematic Biology . 61 (1): 150–164. doi:10.1093/sysbio/syr089. PMC   3243735 . PMID   21900649.
  7. Tsagkogeorga, G; Parker, J; Stupka, E; Cotton, J. A.; Rossiter, S. J. (2013). "Phylogenomic analyses elucidate the evolutionary relationships of bats (Chiroptera)". Current Biology. 23 (22): 2262–2267. doi: 10.1016/j.cub.2013.09.014 . PMID   24184098.