Scrotifera

Last updated

Scrotifera
Temporal range: Paleocene–Recent
Scrotifera.jpg
From top to right: tiger, Indian pangolin, red deer, white rhino and Lyle's flying fox. Representing the living orders: Carnivora, Pholidota, Artiodactyla, Perissodactyla and Chiroptera, comprising Scrotifera.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Superorder: Laurasiatheria
Clade: Scrotifera
Waddell et al., 1999 [1]
Subgroups
Synonyms
  • Variamana (Springer, 2005) [2]

Scrotifera ("scrotum bearers") is a clade of placental mammals that groups together grandorder Ferungulata, Chiroptera (bats), other extinct members and their common ancestors. The clade Scrotifera is a sister group to the order Eulipotyphla (true insectivores) based on evidence from molecular phylogenetics, [1] and together they make superorder Laurasiatheria. The last common ancestor of Scrotifera is supposed to have diversified ca. 73.1 [3] to 85.5 [4] million years ago.

Contents

Etymology

Peter Waddell, then of the Institute of Statistical Mathematics, explains the etymology of the clade's name as follows:

The name comes from the word scrotum , a pouch in which the testes permanently reside in the adult male. All members of the group have a postpenile scrotum, often prominently displayed, except for some aquatic forms and pangolin (which has the testes just below the skin). It appears to be an ancestral character for this group, yet other orders generally lack this as an ancestral feature, with the probable exception of Primates. [1]

Classification and phylogeny

History of phylogeny

In 2006, the clade Pegasoferae (a clade of mammals that includes orders Chiroptera, Carnivora, Perissodactyla and Pholidota) was proposed as part of the clade Scrotifera and a sister group to the order Artiodactyla, based on genomic research in molecular systematics. [5] The monophyly of the group is not well supported, and recent studies have indicated that this clade is not a natural grouping. [4] [6]

According to a 2022 study, two extinct species ( Eosoricodon terrigena and "Wyonycteris" microtis ) were identified as outside of the family Nyctitheriidae and more closely related mammals to bats. [7] In another 2022 study, the extinct genus Acmeodon was recognized as not a member of the extinct order Cimolesta but a basal laurasiatherian mammal in the clade Scrotifera. [8] [9]

Taxonomy

Former classification:Current classification:

See also

Related Research Articles

<span class="mw-page-title-main">Carnivora</span> Order of mammals

Carnivora is an order of placental mammals that have specialized in primarily eating flesh, whose members are formally referred to as carnivorans. The order Carnivora is the sixth largest order of mammals, comprising at least 279 species on every major landmass and in a variety of habitats, ranging from the cold polar regions of Earth to the hyper-arid region of the Sahara Desert and the open seas. Carnivorans exhibit a wide array of body plans, varying greatly in size and shape.

<span class="mw-page-title-main">Ungulate</span> Group of animals that walk on the tips of their toes or hooves

Ungulates are members of the diverse clade Euungulata, which primarily consists of large mammals with hooves. Once part of the clade "Ungulata" along with the clade Paenungulata, "Ungulata" has since been determined to be a polyphyletic and thereby invalid clade based on molecular data. As a result, true ungulates had since been reclassified to the newer clade Euungulata in 2001 within the clade Laurasiatheria while Paenungulata has been reclassified to a distant clade Afrotheria. Living ungulates are divided into two orders: Perissodactyla including equines, rhinoceroses, and tapirs; and Artiodactyla including cattle, antelope, pigs, giraffes, camels, sheep, deer, and hippopotamuses, among others. Cetaceans such as whales, dolphins, and porpoises are also classified as artiodactyls, although they do not have hooves. Most terrestrial ungulates use the hoofed tips of their toes to support their body weight while standing or moving. Two other orders of ungulates, Notoungulata and Litopterna, both native to South America, became extinct at the end of the Pleistocene, around 12,000 years ago.

<span class="mw-page-title-main">Placentalia</span> Infraclass of mammals in the clade Eutheria

Placental mammals are one of the three extant subdivisions of the class Mammalia, the other two being Monotremata and Marsupialia. Placentalia contains the vast majority of extant mammals, which are partly distinguished from monotremes and marsupials in that the fetus is carried in the uterus of its mother to a relatively late stage of development. The name is something of a misnomer, considering that marsupials also nourish their fetuses via a placenta, though for a relatively briefer period, giving birth to less-developed young, which are then nurtured for a period inside the mother's pouch. Placentalia represents the only living group within Eutheria, which contains all mammals that are more closely related to placentals than they are to marsupials.

<span class="mw-page-title-main">Metatheria</span> Clade of marsupials and close relatives

Metatheria is a mammalian clade that includes all mammals more closely related to marsupials than to placentals. First proposed by Thomas Henry Huxley in 1880, it is a more inclusive group than the marsupials; it contains all marsupials as well as many extinct non-marsupial relatives. It is one of two groups placed in the clade Theria alongside Eutheria, which contains the placentals. Remains of metatherians have been found on all of Earths continents.

<span class="mw-page-title-main">Afrotheria</span> Clade of mammals containing elephants and elephant shrews

Afrotheria is a superorder of placental mammals, the living members of which belong to groups that are either currently living in Africa or of African origin: golden moles, elephant shrews, otter shrews, tenrecs, aardvarks, hyraxes, elephants, sea cows, and several extinct clades. Most groups of afrotheres share little or no superficial resemblance, and their similarities have only become known in recent times because of genetics and molecular studies. Many afrothere groups are found mostly or exclusively in Africa, reflecting the fact that Africa was an island continent from the Cretaceous until the early Miocene around 20 million years ago, when Afro-Arabia collided with Eurasia.

<span class="mw-page-title-main">Euarchontoglires</span> Superorder of mammals

Euarchontoglires, synonymous with Supraprimates, is a clade and a superorder of mammals, the living members of which belong to one of the five following groups: rodents, lagomorphs, treeshrews, primates, and colugos.

<span class="mw-page-title-main">Euarchonta</span> Mammal grandorder containing treeshrews, colugos, and primates

The Euarchonta are a proposed grandorder of mammals: the order Scandentia (treeshrews), and its sister Primatomorpha mirorder, containing the Dermoptera or colugos and the primates.

<span class="mw-page-title-main">Suina</span> Lineage of omnivorous, non-ruminant artiodactyl mammals that includes the pigs and peccaries

Suina is a suborder of omnivorous, non-ruminant artiodactyl mammals that includes the domestic pig and peccaries. A member of this clade is known as a suine. Suina includes the family Suidae, termed suids, known in English as pigs or swine, as well as the family Tayassuidae, termed tayassuids or peccaries. Suines are largely native to Africa, South America, and Southeast Asia, with the exception of the wild boar, which is additionally native to Europe and Asia and introduced to North America and Australasia, including widespread use in farming of the domestic pig subspecies. Suines range in size from the 55 cm (22 in) long pygmy hog to the 210 cm (83 in) long giant forest hog, and are primarily found in forest, shrubland, and grassland biomes, though some can be found in deserts, wetlands, or coastal regions. Most species do not have population estimates, though approximately two billion domestic pigs are used in farming, while several species are considered endangered or critically endangered with populations as low as 100. One species, Heude's pig, is considered by the International Union for Conservation of Nature to have gone extinct in the 20th century.

<span class="mw-page-title-main">Laurasiatheria</span> Clade of mammals

Laurasiatheria is a superorder of placental mammals that groups together true insectivores (eulipotyphlans), bats (chiropterans), carnivorans, pangolins (pholidotes), even-toed ungulates (artiodactyls), odd-toed ungulates (perissodactyls), and all their extinct relatives. From systematics and phylogenetic perspectives, it is subdivided into order Eulipotyphla and clade Scrotifera. It is a sister group to Euarchontoglires with which it forms the magnorder Boreoeutheria. Laurasiatheria was discovered on the basis of the similar gene sequences shared by the mammals belonging to it; no anatomical features have yet been found that unite the group, although a few have been suggested such as a small coracoid process, a simplified hindgut, high intelligence, lack of grasping hands and allantoic vessels that are large to moderate in size. The Laurasiatheria clade is based on DNA sequence analyses and retrotransposon presence/absence data. The superorder originated on the northern supercontinent of Laurasia, after it split from Gondwana when Pangaea broke up. Its last common ancestor is supposed to have lived between ca. 76 to 90 million years ago.

<span class="mw-page-title-main">Ferae</span> A clade of mammals consisting of carnivorans and pholidotes

Ferae is a mirorder of placental mammals in grandorder Ferungulata, that groups together clades Pan-Carnivora and Pholidotamorpha.

<span class="mw-page-title-main">Atlantogenata</span> Clade of mammals

Atlantogenata is a proposed clade (magnorder) of placental mammals containing the cohorts or superorders Xenarthra and Afrotheria. These groups originated and radiated in the South American and African continents, respectively, presumably in the Cretaceous. Together with Boreoeutheria, they make up Placentalia. The monophyly of this grouping is supported by some genetic evidence.

<span class="mw-page-title-main">South American native ungulates</span> Extinct clade of mammals

South American native ungulates, commonly abbreviated as SANUs, are extinct ungulate-like mammals that were indigenous to South America from the Paleocene until the end of the Late Pleistocene. They represented a dominant element of South America's Cenozoic terrestrial mammal fauna prior to the arrival of living unguate groups in South America during the Pliocene and Pleistocene as part of the Great American Interchange. They comprise five major groups conventionally ranked as orders—Astrapotheria, Litopterna, Notoungulata, Pyrotheria, and Xenungulata—as well as the primitive "condylarth" groups Didolodontidae and Kollpaniinae. It has been proposed that some or all of the members of this group form a clade, named Meridiungulata, though the relationships of South American ungulates remain largely unresolved. The two largest groups of South American ungulates, the notoungulates and the litopterns, were the only groups to persist beyond the mid Miocene. Only a few species of notoungulates and litopterns survived until the end-Pleistocene extinction event around 12,000 years ago where they became extinct with most other large mammals in the Americas, shortly after the first arrival of humans into the region.

<span class="mw-page-title-main">Zooamata</span> Group of mammals comprising horses, dogs, and pangolins, among others

Zooamata is a proposal for a clade of mammals uniting the Ferae with the Perissodactyla.

<span class="mw-page-title-main">Pecora</span> Infraorder of mammals

Pecora is an infraorder of even-toed hoofed mammals with ruminant digestion. Most members of Pecora have cranial appendages projecting from their frontal bones; only two extant genera lack them, Hydropotes and Moschus. The name "Pecora" comes from the Latin word pecus, which means "cattle". Although most pecorans have cranial appendages, only some of these are properly called "horns", and many scientists agree that these appendages did not arise from a common ancestor, but instead evolved independently on at least two occasions. Likewise, while Pecora as a group is supported by both molecular and morphological studies, morphological support for interrelationships between pecoran families is disputed.

<span class="mw-page-title-main">Boreoeutheria</span> Magnorder of mammals containing Laurasiatheria and Euarchontoglires

Boreoeutheria is a magnorder of placental mammals that groups together superorders Euarchontoglires and Laurasiatheria. With a few exceptions, male boreoeutherians have a scrotum, an ancestral feature of the clade. The sub-clade Scrotifera was named after this feature.

<span class="mw-page-title-main">Ferungulata</span> Clade of mammals comprising carnivorans, pangolins, artiodactyls and perissodactyls

Ferungulata is a grandorder of placental mammals that groups together mirorder Ferae and clade Pan-Euungulata. It has existed in two guises, a traditional one based on morphological analysis and a revised one taking into account more recent molecular analyses. The Fereungulata is a sister group to the order Chiroptera (bats) and together they make clade Scrotifera.

<span class="mw-page-title-main">Pegasoferae</span> Group of mammals comprising horses, bats, carnivores, and pangolins, among others

Pegasoferae is a proposed clade of mammals based on genomic research in molecular systematics by Nishihara, Hasegawa and Okada (2006).

<span class="mw-page-title-main">Artiofabula</span> Clade of mammals comprising pigs, cows, hippos, and whales, among others

Artiofabula is a clade made up of the Suina and the Cetruminantia. The clade was found in molecular phylogenetic analyses and contradicted traditional relationships based on morphological analyses.

<span class="mw-page-title-main">Tragulina</span> Infraorder of ungulates

Tragulina is an infraorder of even-toed ungulates. Only the chevrotains survive to the present, including the genera Tragulus and Hyemoschus, all within the family Tragulidae.

Wyonycteris is a genus of small mammals that existed in the late Paleocene and early Eocene epochs. The type species is Wyonycteris chalix, which lived in Wyoming during the Clarkforkian North American Land Mammal Age of the Paleocene and was originally proposed to be an early form of insectivorous bat. Later re-examination of the material has put this alliance in doubt, and the genus has instead been proposed as belonging to the subfamily Placentidentinae, within the family Nyctitheriidae. Similar fossil material of the same time period found in Europe was later discovered and described as new species, Wyonycteris richardi.

References

  1. 1 2 3 Waddell, Peter J.; Cao, Ying; Hauf, Jöerg; Hasegawa, Masami (1 March 1999). Olmstead, R. (ed.). "Using Novel Phylogenetic Methods to Evaluate Mammalian mtDNA, Including Amino Acid-Invariant Sites-LogDet plus Site Stripping, to Detect Internal Conflicts in the Data, with Special Reference to the Positions of Hedgehog, Armadillo, and Elephant". Systematic Biology. 48 (1): 31–53. doi: 10.1080/106351599260427 . ISSN   1076-836X. PMID   12078643.
  2. Springer M. S., Murphy W. J., Eizirik E., O'Brien S. J. In: "Placental Mammals: Origins and Relationships of the Major Clades." Rose K. D., Archibald J., editor. Baltimore: Johns Hopkins; (2005.) "Molecular evidence for major placental clades"; pp. 37–49
  3. dos Reis, Mario; Inoue, Jun; Hasegawa, Masami; Asher, Robert J.; Donoghue, Philip C. J.; Yang, Ziheng (7 September 2012). "Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny". Proceedings of the Royal Society B: Biological Sciences. 279 (1742): 3491–3500. doi:10.1098/rspb.2012.0683. ISSN   0962-8452. PMC   3396900 . PMID   22628470.
  4. 1 2 Zhou, Xuming; Xu, Shixia; Xu, Junxiao; Chen, Bingyao; Zhou, Kaiya; Yang, Guang (1 January 2012). "Phylogenomic Analysis Resolves the Interordinal Relationships and Rapid Diversification of the Laurasiatherian Mammals". Systematic Biology. 61 (1): 150–64. doi:10.1093/sysbio/syr089. ISSN   1063-5157. PMC   3243735 . PMID   21900649.
  5. Nishihara, H.; Hasegawa, M.; Okada, N. (2006). "Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions". Proceedings of the National Academy of Sciences . 103 (26): 9929–9934. Bibcode:2006PNAS..103.9929N. doi: 10.1073/pnas.0603797103 . PMC   1479866 . PMID   16785431.
  6. Tsagkogeorga, G.; Parker, J.; Stupka, E.; Cotton, J. A.; Rossiter, S. J. (2013). "Phylogenomic analyses elucidate the evolutionary relationships of bats (Chiroptera)". Current Biology. 23 (22): 2262–2267. Bibcode:2013CBio...23.2262T. doi: 10.1016/j.cub.2013.09.014 . PMID   24184098.
  7. Matthew F. Jones, Nancy Simmons, K. Christopher Beard (2022.) "Relationship of nyctitheres (Mammalia, Nyctitheriidae) to bats and other laurasiatherians", in "The Society of Vertebrate Paleontology 82nd annual meeting"
  8. Bertrand, O. C.; Shelley, S. L.; Williamson, T. E.; Wible, J. R.; Chester, S. G. B.; Flynn, J. J.; Holbrook, L. T.; Lyson, T. R.; Meng, J.; Miller, I. M.; Püschel, H. P.; Smith, T.; Spaulding, M.; Tseng, Z. J.; Brusatte, S. L. (2022). "Brawn before brains in placental mammals after the end-Cretaceous extinction". Science. 376 (6588): 80–85. Bibcode:2022Sci...376...80B. doi:10.1126/science.abl5584. hdl: 20.500.11820/d7fb8c6e-886e-4c1d-9977-0cd6406fda20 . PMID   35357913.
  9. Bertrand, O. C.; Jiménez Lao, M.; Shelley, S. L.; Wible, J. R.; Williamson, T. E.; Meng, J.; Brusatte, S. L. (2023). "The virtual brain endocast of Trogosus (Mammalia, Tillodontia) and its relevance in understanding the extinction of archaic placental mammals" (PDF). Journal of Anatomy. 244 (1): 1–21. doi:10.1111/joa.13951. PMC  10734658. PMID   37720992. S2CID   262047180.