Zwittermicin A

Last updated
Zwittermicin A
Zwastereo.png
Names
Preferred IUPAC name
(2S,3R,4R,5R,7R,8S)-4,8-Diamino-N-[(2S)-1-amino-3-(carbamoylamino)-1-oxopropan-2-yl]-2,3,5,7,9-pentahydroxynonanamide
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1S/C13H28N6O8/c14-4(3-20)6(21)1-7(22)8(15)9(23)10(24)12(26)19-5(11(16)25)2-18-13(17)27/h4-10,20-24H,1-3,14-15H2,(H2,16,25)(H,19,26)(H3,17,18,27)/t4-,5-,6+,7+,8+,9+,10-/m0/s1 X mark.svgN
    Key: FYIPKJHNWFVEIR-VTAUKWRXSA-N X mark.svgN
  • InChI=1/C13H28N6O8/c14-4(3-20)6(21)1-7(22)8(15)9(23)10(24)12(26)19-5(11(16)25)2-18-13(17)27/h4-10,20-24H,1-3,14-15H2,(H2,16,25)(H,19,26)(H3,17,18,27)/t4-,5-,6+,7+,8+,9+,10-/m0/s1
    Key: FYIPKJHNWFVEIR-VTAUKWRXBI
  • C([C@H]([C@H](CO)N)O)[C@H]([C@H]([C@H]([C@@H](C(=O)N[C@@H](CNC(=O)N)C(=O)N)O)O)N)O
Properties
C13H28N6O8
Molar mass 396.396820
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Zwittermicin A is an antibiotic that has been identified from the bacterium Bacillus cereus UW85. [1] It is a molecule of interest to agricultural industry because it has the potential to suppress plant disease due to its broad spectrum activity against certain gram positive and gram negative prokaryotic micro-organisms. The molecule is also of interest from a metabolic perspective because it represents a new structural class of antibiotic and suggests a crossover between polyketide and non-ribosomal peptide biosynthetic pathways. Zwittermicin A is linear aminopolyol. [2]

Biosynthesis

Zwittermycin A biosynthesis is a hybrid of polyketide and non-ribosomal peptide synthetic pathways. Most likely, all of the synthases are located on one megasynthase much like a type I fatty acid synthase. Based on mutant studies, the biosynthetic cluster involved in zwittermicin production has been identified and the pathway has been proposed. The genes responsible for the production of zwittermicin A are located on a 16 kb cluster containing nine orfs and a self resistant gene zmaR, a gene that encodes an acylation enzyme that deactivate zwittermicin A. [3] The hybrid synthase used in zwittermicin A production utilizes modified extender units such as hydroxymalonyl-ACP, aminomalonyl-ACP and 2,3-diaminopropionate. Therefore, many of the genes in the biosynthetic cluster encode for enzymes responsible for the synthesis of these extender units used in the hybrid synthase. For example, orf5 encodes ZWA5A, an enzyme that is responsible for the PLP mediated amination that converts L-serine to 2,3-diaminopropionate. It has also been shown that orf5, orf7, orf4 and orf6 participate in the biosynthesis of aminomalonyl-ACP and orf3, orf2 and orf1 synthesize hydroxymalonyl-ACP. [4]

Units used in Zwittermicin A Production Zwabreakdown.png
Units used in Zwittermicin A Production
Biosynthesis of L-2,3 Diaminopropionate Diaminosynthesis.png
Biosynthesis of L-2,3 Diaminopropionate


Gene organization of the Zwittermicin A biosynthetic cluster. Zwagenes.png
Gene organization of the Zwittermicin A biosynthetic cluster.


Gene organization of the Zwittermicin A biosynthetic cluster.


Genes encoding for the seven component hybrid synthase responsible for the assembly of the backbone is likely located on the largest gene, orf8. Assembly begins by the activation of a serine residue. This is done by tethering the amino acid to a peptidal carrier protein via a non-ribosomal peptide synthetase. Subsequently elongation of an activated malonyl unit covalently attached to an acyl carrier protein by a ketosynthase occurs giving the five carbon unit. The next two elongation steps proceed in a similar manner using aminomalonyl and hydroxymalonyl units from a second and third ketosynthase. Finally, condensation of 2,3-diaminopropionate with the carried molecule by a second nonribosomalpeptide synthase produces the zwittermicin A backbone. Attack of ammonia via an amidotransferase enzyme releases the carrier protein. The last step involves a carbomyltransferase enzyme that carbamolates the released molecule giving the final product. [5]

Zwittermicin A Biosynthesis Zwittermicinsynthesis.gif
Zwittermicin A Biosynthesis

Footnotes

  1. Haiyin, He (April, 1994) "Zwittermicin A, an Antifungal and Plant Protection Agent from Bacillus cereus", Tetrahedron Letters 35 (16) 2499-2502 doi=10.1016/S0040-4039(00)77154-1
  2. Rogers EW, Molinski TF (February 2007). "Asymmetric synthesis of diastereomeric diaminoheptanetetraols. A proposal for the configuration of (+)-zwittermicin a". Org. Lett. 9 (3): 437–40. doi:10.1021/ol062804a. PMC   2729442 . PMID   17249781.
  3. Stohl EA, Milner JL, Handelsman J (September 1999). "Zwittermicin A biosynthetic cluster". Gene. 237 (2): 403–11. doi:10.1016/S0378-1119(99)00315-7. PMID   10521664.
  4. Emmert EA, Klimowicz AK, Thomas MG, Handelsman J (January 2004). "Genetics of zwittermicin a production by Bacillus cereus". Appl. Environ. Microbiol. 70 (1): 104–13. doi:10.1128/AEM.70.1.104-113.2004. PMC   321298 . PMID   14711631.

Related Research Articles

Oxytetracycline Antibiotic

Oxytetracycline is a broad-spectrum tetracycline antibiotic, the second of the group to be discovered.

Polyketides are a class of natural products derived from a precursor molecule consisting of a chain of alternating ketone (or reduced forms of a ketone) and methylene groups: (-CO-CH2-). First studied in the early 20th century, discovery, biosynthesis, and application of polyketides has evolved. It is a large and diverse group of secondary metabolites caused by its complex biosynthesis which resembles that of fatty acid synthesis. Because of this diversity, polyketides can have various medicinal, agricultural, and industrial applications. Many polyketides are medicinal or exhibit acute toxicity. Biotechnology has enabled discovery of more naturally-occurring polyketides and evolution of new polyketides with novel or improved bioactivity.

Nonribosomal peptides (NRP) are a class of peptide secondary metabolites, usually produced by microorganisms like bacteria and fungi. Nonribosomal peptides are also found in higher organisms, such as nudibranchs, but are thought to be made by bacteria inside these organisms. While there exist a wide range of peptides that are not synthesized by ribosomes, the term nonribosomal peptide typically refers to a very specific set of these as discussed in this article.

Daptomycin Antibiotic

Daptomycin, sold under the brand name Cubicin among others, is a lipopeptide antibiotic used in the treatment of systemic and life-threatening infections caused by Gram-positive organisms.

Viomycin Chemical compound

Viomycin is a member of the tuberactinomycin family, a group of nonribosomal peptide antibiotics exhibiting anti-tuberculosis activity. The tuberactinomycin family is an essential component in the drug cocktail currently used to fight infections of Mycobacterium tuberculosis. Viomycin was the first member of the tuberactinomycins to be isolated and identified, and was used to treat TB until it was replaced by the less toxic, but structurally related compound, capreomycin. The tuberactinomycins target bacterial ribosomes, binding RNA and disrupting bacterial protein synthesis and certain forms of RNA splicing. Viomycin is produced by the actinomycete Streptomyces puniceus.

Neocarzinostatin Chemical compound

Neocarzinostatin (NCS) is a macromolecular chromoprotein enediyne antitumor antibiotic secreted by Streptomyces macromomyceticus.

Polyketide synthases (PKSs) are a family of multi-domain enzymes or enzyme complexes that produce polyketides, a large class of secondary metabolites, in bacteria, fungi, plants, and a few animal lineages. The biosyntheses of polyketides share striking similarities with fatty acid biosynthesis.

Chalcone synthase

Chalcone synthase or naringenin-chalcone synthase (CHS) is an enzyme ubiquitous to higher plants and belongs to a family of polyketide synthase enzymes (PKS) known as type III PKS. Type III PKSs are associated with the production of chalcones, a class of organic compounds found mainly in plants as natural defense mechanisms and as synthetic intermediates. CHS was the first type III PKS to be discovered. It is the first committed enzyme in flavonoid biosynthesis. The enzyme catalyzes the conversion of 4-coumaroyl-CoA and malonyl-CoA to naringenin chalcone.

Biosynthesis of doxorubicin

Doxorubicin (DXR) is a 14-hydroxylated version of daunorubicin, the immediate precursor of DXR in its biosynthetic pathway. Daunorubicin is more abundantly found as a natural product because it is produced by a number of different wild type strains of streptomyces. In contrast, only one known non-wild type species, streptomyces peucetius subspecies caesius ATCC 27952, was initially found to be capable of producing the more widely used doxorubicin. This strain was created by Arcamone et al. in 1969 by mutating a strain producing daunorubicin, but not DXR, at least in detectable quantities. Subsequently, Hutchinson's group showed that under special environmental conditions, or by the introduction of genetic modifications, other strains of streptomyces can produce doxorubicin. His group has also cloned many of the genes required for DXR production, although not all of them have been fully characterized. In 1996, Strohl's group discovered, isolated and characterized dox A, the gene encoding the enzyme that converts daunorubicin into DXR. By 1999, they produced recombinant Dox A, a Cytochrome P450 oxidase, and found that it catalyzes multiple steps in DXR biosynthesis, including steps leading to daunorubicin. This was significant because it became clear that all daunorubicin producing strains have the necessary genes to produce DXR, the much more therapeutically important of the two. Hutchinson's group went on to develop methods to improve the yield of DXR, from the fermentation process used in its commercial production, not only by introducing Dox A encoding plasmids, but also by introducing mutations to deactivate enzymes that shunt DXR precursors to less useful products, for example baumycin-like glycosides. Some triple mutants, that also over-expressed Dox A, were able to double the yield of DXR. This is of more than academic interest because at that time DXR cost about $1.37 million per kg and current production in 1999 was 225 kg per annum. More efficient production techniques have brought the price down to $1.1 million per kg for the non-liposomal formulation. Although DXR can be produced semi-synthetically from daunorubicin, the process involves electrophilic bromination and multiple steps and the yield is poor. Since daunorubicin is produced by fermentation, it would be ideal if the bacteria could complete DXR synthesis more effectively.

In enzymology, an erythronolide synthase is an enzyme that catalyzes the chemical reaction

Streptogramin A is a group of antibiotics within the larger family of antibiotics known as streptogramins. They are synthesized by the bacteria Streptomyces virginiae. The streptogramin family of antibiotics consists of two distinct groups: group A antibiotics contain a 23-membered unsaturated ring with lactone and peptide bonds while group B antibiotics are depsipeptides. While structurally different, these two groups of antibiotics act synergistically, providing greater antibiotic activity than the combined activity of the separate components. These antibiotics have until recently been commercially manufactured as feed additives in agriculture, although today there is increased interest in their ability to combat antibiotic-resistant bacteria, particularly vancomycin-resistant bacteria.

Apratoxin A Chemical compound

Apratoxin A - is a cyanobacterial secondary metabolite, known as a potent cytotoxic marine natural product. It is a derivative of the Apratoxin family of cytotoxins. The mixed peptide-polyketide natural product comes from a polyketide synthase/non-ribosomal peptide synthase pathway (PKS/NRPS). This cytotoxin is known for inducing G1-phase cell cycle arrest and apoptosis. This natural product's activity has made it a popular target for developing anticancer derivatives.

Pseurotin A Chemical compound

Pseurotin A is a secondary metabolite of Aspergillus.

Ketoacyl synthase

Ketoacyl synthases (KSs) catalyze the condensation reaction of acyl-CoA or acyl-acyl ACP with malonyl-CoA to form 3-ketoacyl-CoA or with malonyl-ACP to form 3-ketoacyl-ACP. This reaction is a key step in the fatty acid synthesis cycle, as the resulting acyl chain is two carbon atoms longer than before. KSs exist as individual enzymes, as they do in type II fatty acid synthesis and type II polyketide synthesis, or as domains in large multidomain enzymes, such as type I fatty acid synthases (FASs) and polyketide synthases (PKSs). KSs are divided into five families: KS1, KS2, KS3, KS4, and KS5.

Curacin A is a hybrid polyketide synthase (PKS)/nonribosomal peptide synthase (NRPS) derived natural product produced isolated from the cyanobacterium Lyngbya majuscula. Curacin A belongs to a family of natural products including jamaicamide, mupirocin, and pederin that have an unusual terminal alkene. Additionally, Curacin A contains a notable thiazoline ring and a unique cyclopropyl moiety, which is essential to the compound's biological activity. Curacin A has been characterized as potent antiproliferative cytotoxic compound with notable anticancer activity for several cancer lines including renal, colon, and breast cancer. Curacin A has been shown to interact with colchicine binding sites on tubulin, which inhibits microtubule polymerization, an essential process for cell division and proliferation.

Fostriecin is a type I polyketide synthase (PKS) derived natural product, originally isolated from the soil bacterium Streptomyces pulveraceus. It belongs to a class of natural products which characteristically contain a phosphate ester, an α,β-unsaturated lactam and a conjugated linear diene or triene chain produced by Streptomyces. This class includes structurally related compounds cytostatin and phoslactomycin. Fostriecin is a known potent and selective inhibitor of protein serine/threonine phosphatases, as well as DNA topoisomerase II. Due to its activity against protein phosphatases PP2A and PP4 which play a vital role in cell growth, cell division, and signal transduction, fostriecin was looked into for its antitumor activity in vivo and showed in vitro activity against leukemia, lung cancer, breast cancer, and ovarian cancer. This activity is thought to be due to PP2A's assumed role in regulating apoptosis of cells by activating cytotoxic T-lymphocytes and natural killer cells involved in tumor surveillance, along with human immunodeficiency virus-1 (HIV-1) transcription and replication.

Butyrolactol A is an organic chemical compound of interest for its potential use as an antifungal antibiotic.

Cyclodipeptide synthases (CDPSs) are a newly defined family of peptide-bond forming enzymes that are responsible for the ribosome-independent biosynthesis of various cyclodipeptides, which are the precursors of many natural products with important biological activities. As a substrate for this synthesis, CDPSs use two amino acids activated as aminoacyl-tRNAs (aa-tRNAs), therefore diverting them from the ribosomal machinery. The first member of this family was identified in 2002 during the characterization of the albonoursin biosynthetic pathway in Streptomyces noursei. CDPSs are present in bacteria, fungi, and animal cells.

Prescopranone Chemical compound

Prescopranone is a key intermediate in the biosynthesis of scopranones. Prescopranone is the precursor to scopranone A, scopranone B, and scopranone C, which are produced by Streptomyces sp. BYK-11038.

Andrimid is an antibiotic natural product that is produced by the marine bacterium Vibrio coralliilyticus. Andrimid is an inhibitor of fatty acid biosynthesis by blocking the carboxyl transfer reaction of acetyl-CoA carboxylase (ACC).