(Cyclopentadienyl)titanium trichloride

Last updated
(Cyclopentadienyl)titanium trichloride
Titanocene-trichloride-3D-balls.png
Names
Other names
Titanocene trichloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.156.156 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C5H5.3ClH.Ti/c1-2-4-5-3-1;;;;/h1-5H;3*1H;/q;;;;+3/p-3
    Key: AENCLWKVWIIOQH-UHFFFAOYSA-K
  • C1=C[CH]C=C1.Cl[Ti](Cl)Cl
Properties
C5H5Cl3Ti
Molar mass 219.31 g·mol−1
Appearanceorange solid
Density 1.768 g/cm3
Melting point 210 °C (410 °F; 483 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

(Cyclopentadienyl)titanium trichloride is an organotitanium compound with the formula (C5H5)TiCl3. It is a moisture sensitive orange solid. The compound adopts a piano stool geometry. [1]

Contents

Preparation and reactions

(C5H5)TiCl3 is prepared by the reaction of titanocene dichloride and titanium tetrachloride:

(C5H5)2TiCl2 + TiCl4 → 2 (C5H5)TiCl3

The complex is electrophilic, readily forming alkoxide complexes upon treatment with alcohols. [2]

Reduction of (cyclopentadienyl)titanium trichloride with zinc powder gives the polymeric Ti(III) derivative (cyclopentadienyl)titanium dichloride: [3]

(C5H5)2TiCl2 + 0.5 Zn → 1/n [(C5H5)TiCl3]n + 0.5 ZnCl2

See also

Related Research Articles

<span class="mw-page-title-main">Titanium tetrachloride</span> Inorganic chemical compound

Titanium tetrachloride is the inorganic compound with the formula TiCl4. It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. TiCl4 is a volatile liquid. Upon contact with humid air, it forms thick clouds of titanium dioxide and hydrochloric acid, a reaction that was formerly exploited for use in smoke machines. It is sometimes referred to as “tickle” or “tickle 4”, as a phonetic representation of the symbols of its molecular formula.

<span class="mw-page-title-main">Iron(II) chloride</span> Chemical compound

Iron(II) chloride, also known as ferrous chloride, is the chemical compound of formula FeCl2. It is a paramagnetic solid with a high melting point. The compound is white, but typical samples are often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in commerce and the laboratory. There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.

<span class="mw-page-title-main">Rhodium(III) chloride</span> Chemical compound

Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic solids featuring octahedral Rh(III) centres. Depending on the value of n, the material is either a dense brown solid or a soluble reddish salt. The soluble trihydrated (n = 3) salt is widely used to prepare compounds used in homogeneous catalysis, notably for the industrial production of acetic acid and hydroformylation.

<span class="mw-page-title-main">Ruthenium(III) chloride</span> Chemical compound

Ruthenium(III) chloride is the chemical compound with the formula RuCl3. "Ruthenium(III) chloride" more commonly refers to the hydrate RuCl3·xH2O. Both the anhydrous and hydrated species are dark brown or black solids. The hydrate, with a varying proportion of water of crystallization, often approximating to a trihydrate, is a commonly used starting material in ruthenium chemistry.

<span class="mw-page-title-main">Titanocene dichloride</span> Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

<span class="mw-page-title-main">Zirconium(IV) chloride</span> Chemical compound

Zirconium(IV) chloride, also known as zirconium tetrachloride, is an inorganic compound frequently used as a precursor to other compounds of zirconium. This white high-melting solid hydrolyzes rapidly in humid air.

Titanium(III) chloride is the inorganic compound with the formula TiCl3. At least four distinct species have this formula; additionally hydrated derivatives are known. TiCl3 is one of the most common halides of titanium and is an important catalyst for the manufacture of polyolefins.

<span class="mw-page-title-main">Titanium(II) chloride</span> Chemical compound

Titanium(II) chloride is the chemical compound with the formula TiCl2. The black solid has been studied only moderately, probably because of its high reactivity. Ti(II) is a strong reducing agent: it has a high affinity for oxygen and reacts irreversibly with water to produce H2. The usual preparation is the thermal disproportionation of TiCl3 at 500 °C. The reaction is driven by the loss of volatile TiCl4:

<span class="mw-page-title-main">Sandwich compound</span> Chemical compound made of two ring ligands bound to a metal

In organometallic chemistry, a sandwich compound is a chemical compound featuring a metal bound by haptic, covalent bonds to two arene (ring) ligands. The arenes have the formula CnHn, substituted derivatives and heterocyclic derivatives. Because the metal is usually situated between the two rings, it is said to be "sandwiched". A special class of sandwich complexes are the metallocenes.

<span class="mw-page-title-main">Organotitanium chemistry</span>

Organotitanium chemistry is the science of organotitanium compounds describing their physical properties, synthesis, and reactions. Organotitanium compounds in organometallic chemistry contain carbon-titanium chemical bonds. They are reagents in organic chemistry and are involved in major industrial processes.

<span class="mw-page-title-main">Titanocene dicarbonyl</span> Chemical compound

Dicarbonylbis(cyclopentadienyl)titanium is the chemical compound with the formula (η5-C5H5)2Ti(CO)2, abbreviated Cp2Ti(CO)2. This maroon-coloured, air-sensitive species is soluble in aliphatic and aromatic solvents. It has been used for the deoxygenation of sulfoxides, reductive coupling of aromatic aldehydes and reduction of aldehydes.

Niobocene dichloride is the organometallic compound with the formula (C5H5)2NbCl2, abbreviated Cp2NbCl2. This paramagnetic brown solid is a starting reagent for the synthesis of other organoniobium compounds. The compound adopts a pseudotetrahedral structure with two cyclopentadienyl and two chloride substituents attached to the metal. A variety of similar compounds are known, including Cp2TiCl2.

<span class="mw-page-title-main">Organozirconium and organohafnium chemistry</span>

Organozirconium chemistry is the science of exploring the properties, structure, and reactivity of organozirconium compounds, which are organometallic compounds containing chemical bonds between carbon and zirconium. Organozirconium compounds have been widely studied, in part because they are useful catalysts in Ziegler-Natta polymerization.

In organometallic chemistry, bent metallocenes are a subset of metallocenes. In bent metallocenes, the ring systems coordinated to the metal are not parallel, but are tilted at an angle. A common example of a bent metallocene is Cp2TiCl2. Several reagents and much research is based on bent metallocenes.

<span class="mw-page-title-main">Titanium ethoxide</span> Chemical compound

Titanium ethoxide is a chemical compound with the formula Ti4(OCH2CH3)16. It is a commercially available colorless liquid that is soluble in organic solvents but hydrolyzes readily. Its structure is more complex than suggested by its empirical formula. Like other alkoxides of titanium(IV) and zirconium(IV), it finds used in organic synthesis and materials science.

Molybdocene dichloride is the organomolybdenum compound with the formula (η5-C5H5)2MoCl2 and IUPAC name dichlorobis(η5-cyclopentadienyl)molybdenum(IV), and is commonly abbreviated as Cp2MoCl2. It is a brownish-green air- and moisture-sensitive powder. In the research laboratory, it is used to prepare many derivatives.

<span class="mw-page-title-main">Titanocene pentasulfide</span> Chemical compound

Titanocene pentasulfide is the organotitanium compound with the formula (C5H5)2TiS5, commonly abbreviated as Cp2TiS5. This metallocene exists as a bright red solid that is soluble in organic solvents. It is of academic interest as a precursor to unusual allotropes of elemental sulfur as well as some related inorganic rings.

<span class="mw-page-title-main">(Cyclopentadienyl)zirconium trichloride</span> Chemical compound

(Cyclopentadienyl)zirconium trichloride is an organozirconium compound with the formula (C5H5)ZrCl3. It a moisture-sensitive white solid. The compound adopts a polymeric structure. The compound has been well studied spectroscopically.

<span class="mw-page-title-main">Decamethyltitanocene dichloride</span> Chemical compound

Decamethyltitanocene dichloride is an organotitanium compound with the formula Cp*2TiCl2 (where Cp* is C5(CH3)5, derived from pentamethylcyclopentadiene). It is a red solid that is soluble in nonpolar organic solvents. The complex has been the subject of extensive research. It is a precursor to many organotitanium complexes. The complex is related to titanocene dichloride, which lacks the methyl groups.

The +4 oxidation state dominates titanium chemistry, but compounds in the +3 oxidation state are also numerous. Commonly, titanium adopts an octahedral coordination geometry in its complexes, but tetrahedral TiCl4 is a notable exception. Because of its high oxidation state, titanium(IV) compounds exhibit a high degree of covalent bonding.

References

  1. Rossini, A. J.; Mills, R. W.; Briscoe, G. A.; Norton, E. L.; et al. (2009). "Solid-State Chlorine NMR of Group IV Transition Metal Organometallic Complexes". Journal of the American Chemical Society. 131 (9): 3317–3330. doi:10.1021/ja808390a. PMID   19256569.
  2. Andreas Hafner; Rudolf O. Duthaler (2001). "Trichloro(cyclopentadienyl)titanium". EEROS. doi:10.1002/047084289X.rt202m. ISBN   0-471-93623-5.
  3. Lucas, C. R.; Green, M. L. H. (2007) [1976]. "Some η-Cyclopentadienyl Complexes of Titanium(III)". Inorganic Syntheses. Vol. 16. pp. 237–240. doi:10.1002/9780470132470.ch62. ISBN   978-0-470-13178-7.
  4. Morris, Robert J.; Shaw, Scott L.; Jefferis, Jesse M.; Storhoff, James J.; Goedde, Dean M. (1998). "Monoindenyltrichloride Complexes of Titanium(IV), Zirconium(IV), and Hafnium(IV)". Inorganic Syntheses. Vol. 32. pp. 215–221. doi:10.1002/9780470132630.ch36. ISBN   978-0-471-24921-4.