2-Fluorodeschloroketamine

Last updated

2-Fluorodeschloroketamine
2-Fluorodeschloroketamine.svg
Legal status
Legal status
  • CA: Schedule I
  • DE: NpSG (Industrial and scientific use only)
  • UK: Class B
  • Illegal in Italy, Japan, Latvia, Singapore, Sweden and Switzerland
Identifiers
  • 2-(2-Fluorophenyl)-2-methylamino-cyclohexanone
CAS Number
PubChem CID
ChemSpider
UNII
Chemical and physical data
Formula C13H16FNO
Molar mass 221.275 g·mol−1
3D model (JSmol)
  • CNC1(CCCCC1=O)c2ccccc2F
  • InChI=1S/C13H16FNO/c1-15-13(9-5-4-8-12(13)16)10-6-2-3-7-11(10)14/h2-3,6-7,15H,4-5,8-9H2,1H3
  • Key:PHFAGYYTDLITTB-UHFFFAOYSA-N

2-Fluorodeschloroketamine (also known as 2'-Fl-2-Oxo-PCM, Fluoroketamine and 2-FDCK) is a dissociative anesthetic [1] related to ketamine. Its sale and use as a designer drug has been reported in various countries. [2] [3] [4] It is an analogue of ketamine where the chlorine group has been replaced by fluorine. Due to its recent emergence, the pharmacological specifics of the compound are mostly unclear, but effects are reported to be similar to its parent compound, ketamine.

Contents

History

The synthesis of 2-FDCK was first described in a 2013 paper as part of a larger effort to synthesize and evaluate new anesthetic drugs based on ketamine and its analogues. [1] Ketamine itself was first introduced in 1964 and was approved for clinical use in 1970. Since then it has become one of the most important and applicable general anesthetics as well as a popular recreational drug.

The use of 2-FDCK as a research chemical has been reported in various countries. [2] [5] [6] Many of these new psychoactive substances (NPS) appear on the drug market in order to circumvent existing drug policies. 2-FDCK was first formally notified by the EMCDDA in 2016, alongside 65 other new substances. [6] Due to its recent appearance, little research has been done on the compound so far.

In January 2023, Israeli Biotech company "Clearmind Medicine Inc." announced the successful completion of a preclinical study examining 2-FDCK in a rat model of depression, with the compound outperforming ketamine in longevity of antidepressant effect. [7]

Chemistry

Structure

The full chemical name of 2-FDCK is 2-(2-fluorophenyl)-2-(methylamino)cyclohexan-1-one.

Preparation of 2-FDCK from fluorobenzonitrile. Synthesis of 2-FDCK.png
Preparation of 2-FDCK from fluorobenzonitrile.

2-FDCK belongs to a class of compounds called arylcyclohexylamines which contains various other drugs such as PCP and ketamine. Their general structure consists of a cyclohexylamine unit with an aryl group attached to the same carbon as the amine. 2-FDCK has an o-fluorophenyl group as an aryl substituent and the amine group is methylated. The cyclohexyl ring features a ketone group next to the amine position.

The chemical structure of 2-FDCK differs from ketamine only in that there is a fluorine atom attached to the phenyl group. Ketamine has a chlorine atom in that position. [8]

Synthesis

2-FDCK can be synthesized in a five-step reaction process. [1] First 2-fluorobenzonitrile reacts with the Grignard reagent cyclopentyl magnesium bromide followed by a bromination reaction to obtain α-bromocyclopentyl-(2-fluorophenyl)-ketone. The reaction of the obtained ketone with methylamine at -40 °C then results in the formation of α-hydroxycyclopentyl-(2-fluorophenyl)-N-methylamine. Finally, the five-membered ring cyclopentanol form is expanded to a cyclohexylketone form by a thermal rearrangement reaction. HCl is used to create a water-soluble HCl salt of 2-FDCK.

Detection

2-FDCK and its metabolites can be detected in urine with the use of liquid chromatography mass spectrometry (LC/MS). [4] [9]

Pharmacology

Metabolism

Multistep metabolism of 2-FDCK. The process starts at 2-FDCK itself, which is then converted to nor-2-FDCK. This compound can then undergo transformation to either dehydro-nor-2-FDCK or hydroxy-nor-2-FDCK. Metabolism2FDCK.jpg
Multistep metabolism of 2-FDCK. The process starts at 2-FDCK itself, which is then converted to nor-2-FDCK. This compound can then undergo transformation to either dehydro-nor-2-FDCK or hydroxy-nor-2-FDCK.

The metabolism of 2-FDCK is analogous to that of ketamine: the enzymes CYP2B6 and CYP3A4, the latter to a lesser extent, metabolise 2-FDCK to Nor-2FDCK via N-demethylation. This is further metabolised either to dehydronor-2FDCK by CYP2B6 or to hydroxynor-2FDCK by CYP2A6 and CYP2B6. [3]

In general, the 2-FDCK equivalent shows stronger docking to CYP2B6 in simulations, as well as slower metabolism rate, than the more well-known ketamine. The lipophilicity is observed to be lower for 2-FDCK than for ketamine. [3] In vitro to in vivo extrapolation predicts that in the body, 2-FDCK shows a lower intrinsic hepatic clearance than ketamine. Both of these characteristics would suggest that the effects of 2-FDCK last longer than those of ketamine. [2]

Pharmacodynamics

2-FDCK is structurally similar to ketamine, so a similar mechanism of action is expected, [10] but there has been no study done to confirm this. Due to the halogen in the 2 position not being a chlorine but a fluorine, the molecule is less polar. [3] This could influence binding to proteins, such as the NMDA receptor that ketamine primarily binds to and acts as an antagonist towards.

Comparison to other halogen-substituted ketamine variants

For general (halogen) substitutions of ketamine, docking strength for CYP2B6 follows the pattern H < Br < Cl < F. The parameter of internal clearance follows the pattern Br > Cl > F > H. Lastly, Km (Michaelis constant) follows the pattern of Br < Cl < F < H, and as such the in-vitro metabolism rate follows the inverse pattern, namely Br > Cl > F > H. [4]

Adverse effects

Possible effects and dangers

In 2019, 2-FDCK was found in poisoned individuals in Hong Kong in combination with other ketamine-type drugs. [4]

Due to the fast emergence of NPS, new substances such as 2-FDCK are often not yet specifically mentioned in controlled substance legislation. As a result, NPS are sometimes marketed as 'legal highs'. 2-FDCK is currently illegal in Italy [11] Japan, [12] Latvia, [13] Singapore, [14] Sweden, [15] Switzerland, [16] as well as being covered by blanket bans in Canada, [17] Belgium, [18] and the UK. [19]  

In October 2023 the ECDD recommended that 2-FDCK be added to Schedule II of the Convention on Psychotropic Substances of 1971. [20]  

See also

Related Research Articles

<span class="mw-page-title-main">Bromine</span> Chemical element, symbol Br and atomic number 35

Bromine is a chemical element; it has symbol Br and atomic number 35. It is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig and Antoine Jérôme Balard, its name was derived from the Ancient Greek βρῶμος (bromos) meaning "stench", referring to its sharp and pungent smell.

<span class="mw-page-title-main">Chlorine</span> Chemical element, symbol Cl and atomic number 17

Chlorine is a chemical element; it has symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is a yellow-green gas at room temperature. It is an extremely reactive element and a strong oxidising agent: among the elements, it has the highest electron affinity and the third-highest electronegativity on the revised Pauling scale, behind only oxygen and fluorine.

<span class="mw-page-title-main">Halogen</span> Group of chemical elements

The halogens are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and tennessine (Ts), though some authors would exclude tennessine as its chemistry is unknown and is theoretically expected to be more like that of gallium. In the modern IUPAC nomenclature, this group is known as group 17.

<span class="mw-page-title-main">Ketamine</span> Dissociative anesthetic and anti-depressant

Ketamine is a dissociative anesthetic used medically for induction and maintenance of anesthesia. It is also used as a treatment for depression and pain management. It is a novel compound that was derived from phencyclidine in 1962 in pursuit of a safer anesthetic with fewer hallucinogenic effects.

<span class="mw-page-title-main">Haloalkane</span> Group of chemical compounds derived from alkanes containing one or more halogens

The haloalkanes are alkanes containing one or more halogen substituents. They are a subset of the general class of halocarbons, although the distinction is not often made. Haloalkanes are widely used commercially. They are used as flame retardants, fire extinguishants, refrigerants, propellants, solvents, and pharmaceuticals. Subsequent to the widespread use in commerce, many halocarbons have also been shown to be serious pollutants and toxins. For example, the chlorofluorocarbons have been shown to lead to ozone depletion. Methyl bromide is a controversial fumigant. Only haloalkanes that contain chlorine, bromine, and iodine are a threat to the ozone layer, but fluorinated volatile haloalkanes in theory may have activity as greenhouse gases. Methyl iodide, a naturally occurring substance, however, does not have ozone-depleting properties and the United States Environmental Protection Agency has designated the compound a non-ozone layer depleter. For more information, see Halomethane. Haloalkane or alkyl halides are the compounds which have the general formula "RX" where R is an alkyl or substituted alkyl group and X is a halogen.

In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens. Halides are also commonly introduced using salts of the halides and halogen acids. Many specialized reagents exist for and introducing halogens into diverse substrates, e.g. thionyl chloride.

In chemistry, an interhalogen compound is a molecule which contains two or more different halogen atoms and no atoms of elements from any other group.

<span class="mw-page-title-main">CYP2B6</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2B6 is an enzyme that in humans is encoded by the CYP2B6 gene. CYP2B6 is a member of the cytochrome P450 group of enzymes. Along with CYP2A6, it is involved with metabolizing nicotine, along with many other substances.

<span class="mw-page-title-main">Dimethocaine</span> Stimulant

Dimethocaine, also known as DMC or larocaine, is a compound with a stimulatory effect. This effect resembles that of cocaine, although dimethocaine appears to be less potent. Just like cocaine, dimethocaine is addictive due to its stimulation of the reward pathway in the brain. However, dimethocaine is a legal cocaine replacement in some countries and is even listed by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) under the category “synthetic cocaine derivatives”. The structure of dimethocaine, being a 4-aminobenzoic acid ester, resembles that of procaine. It is found as a white powder at room temperature.

<span class="mw-page-title-main">Arylcyclohexylamine</span> Class of chemical compounds

Arylcyclohexylamines, also known as arylcyclohexamines or arylcyclohexanamines, are a chemical class of pharmaceutical, designer, and experimental drugs.

<span class="mw-page-title-main">Buphedrone</span> Stimulant drug and research chemical

Buphedrone, also known as α-methylamino-butyrophenone (MABP), is a stimulant of the phenethylamine and cathinone chemical classes that was first synthesized in 1928. It is legal in most countries as a research chemical, as long as it is not intended for human consumption.

<span class="mw-page-title-main">Methoxyketamine</span> Chemical compound

Methoxyketamine or 2-MeO-2-deschloroketamine is a designer drug of the arylcyclohexylamine class first reported in 1963. It is an analog of ketamine in which the chlorine atom has been replaced with a methoxy group. Its synthesis by rearrangement of an amino ketone has been reported. As an arylcyclohexylamine, methoxyketamine most likely functions as an NMDA receptor antagonist. It produces sedative, hallucinogenic, and anesthetic effects, but with a lower potency than ketamine itself.

βk-2C-B Chemical compound

βk-2C-B (βeta-keto-4-bromo-2,5-dimethoxyphenylamine), also known as bk-2C-B, is a novel psychedelic substance. It is the beta (β) ketone structural analogue of 2C-B, a psychedelic drug of the 2C family. It is used as a recreational drug, usually taken orally. βk-2C-B is a controlled substance in Canada, Germany, Switzerland, and the United Kingdom.

<span class="mw-page-title-main">Hydroxybupropion</span> Group of stereoisomers

Hydroxybupropion, or 6-hydroxybupropion, is the major active metabolite of the antidepressant and smoking cessation drug bupropion. It is formed from bupropion by the liver enzyme CYP2B6 during first-pass metabolism. With oral bupropion treatment, hydroxybupropion is present in plasma at area under the curve concentrations that are as many as 16–20 times greater than those of bupropion itself, demonstrating extensive conversion of bupropion into hydroxybupropion in humans. As such, hydroxybupropion is likely to play a very important role in the effects of oral bupropion, which could accurately be thought of as functioning largely as a prodrug to hydroxybupropion. Other metabolites of bupropion besides hydroxybupropion include threohydrobupropion and erythrohydrobupropion.

<span class="mw-page-title-main">Fluorolintane</span> Chemical compound

Fluorolintane is a dissociative anesthetic drug that has been sold online as a designer drug.

<span class="mw-page-title-main">Deschloroketamine</span> Chemical compound

Deschloroketamine is a dissociative anesthetic that has been sold online as a designer drug. It has also been proposed for the treatment of bacterial, fungal, viral or protozoal infections and for immunomodulation at doses of 2 mg per day.

<span class="mw-page-title-main">Trifluoromethyldeschloroketamine</span> Chemical compound

Trifluoromethyldeschloroketamine (TFMDCK) is a designer drug from the arylcyclohexylamine family, which is presumed to have similar properties to ketamine, a dissociative anesthetic drug with hallucinogenic and sedative effects. It has been sold over the internet since around 2016, though genuine samples appear to be rare. The o-trifluoromethyl analogue of hydroxynorketamine has also been researched as an antidepressant.

<span class="mw-page-title-main">2-Oxo-PCE</span> Chemical compound

2-Oxo-PCE is a dissociative anesthetic of the arylcyclohexylamine class that is closely related to deschloroketamine and eticyclidine, and has been sold online as a designer drug.

<span class="mw-page-title-main">2-Bromodeschloroketamine</span> Chemical compound

2-Bromodeschloroketamine is a chemical compound of the arylcyclohexylamine class, which is an analog of the dissociative anesthetic drug ketamine in which the chlorine atom has been replaced with a bromine atom. It is used in scientific research as a comparison or control compound in studies into the metabolism of ketamine and norketamine, and has also been sold online alongside arylcyclohexylamine designer drugs, though it is unclear whether bromoketamine has similar pharmacological activity.

<span class="mw-page-title-main">3-Fluorodeschloroketamine</span> Chemical compound

3-Fluorodeschloroketamine is a recreational designer drug related to ketamine. It is from the arylcyclohexylamine family and has dissociative effects. It was made illegal in Finland in August 2019.

References

  1. 1 2 3 4 Moghimi A, Rahmani S, Zare R, Sadeghzadeh M (July 18, 2014). "Synthesis of 2-(2-Fluorophenyl)-2-methylamino-Cyclohexanone as a New Ketamine Derivative". Synthetic Communications. 44 (14): 2021–2028. doi:10.1080/00397911.2014.885053. S2CID   98475552.
  2. 1 2 3 Davidsen AB, Mardal M, Holm NB, Andreasen AK, Johansen SS, Noble C, et al. (February 2020). "Ketamine analogues: Comparative toxicokinetic in vitro-in vivo extrapolation and quantification of 2-fluorodeschloroketamine in forensic blood and hair samples". Journal of Pharmaceutical and Biomedical Analysis. 180: 113049. doi:10.1016/j.jpba.2019.113049. PMID   31881397. S2CID   209499229.
  3. 1 2 3 4 5 Wang PF, Neiner A, Lane TR, Zorn KM, Ekins S, Kharasch ED (February 2019). "Halogen Substitution Influences Ketamine Metabolism by Cytochrome P450 2B6: In Vitro and Computational Approaches". Molecular Pharmaceutics. 16 (2): 898–906. doi:10.1021/acs.molpharmaceut.8b01214. PMC   9121441 . PMID   30589555.
  4. 1 2 3 4 Tang MH, Li TC, Lai CK, Chong YK, Ching CK, Mak TW (July 2020). "Emergence of new psychoactive substance 2-fluorodeschloroketamine: Toxicology and urinary analysis in a cluster of patients exposed to ketamine and multiple analogues". Forensic Science International. 312: 110327. doi:10.1016/j.forsciint.2020.110327. PMID   32460225. S2CID   218954528.
  5. Li C, Lai CK, Tang MH, Chan CC, Chong YK, Mak TW (April 2019). "Ketamine analogues multiplying in Hong Kong". Hong Kong Medical Journal = Xianggang Yi Xue Za Zhi. 25 (2): 169. doi: 10.12809/hkmj197863 . PMID   30971512.
  6. 1 2 European Monitoring Centre for Drugs and Drug Addiction (2017), EMCDDA–Europol 2016 Annual Report on the implementation of Council Decision 2005/387/JHA, Implementation reports, Publications Office of the European Union, Luxembourg.
  7. "Israeli Biotech Clearmind Medicine Announces Positive Pre-Clinical Results Treating Major Depression With a Novel Ketamine-Based Compound". January 31, 2023. Retrieved February 26, 2024.
  8. "Compound Summary for CID 13771618, Fluoroketamine". PubChem. National Center for Biotechnology Information (2021). Retrieved March 7, 2021.
  9. Gicquel T, Pelletier R, Richeval C, Gish A, Hakim F, Ferron PJ, et al. (January 2022). "Metabolite elucidation of 2-fluoro-deschloroketamine (2F-DCK) using molecular networking across three complementary in vitro and in vivo models" (PDF). Drug Testing and Analysis. 14 (1): 144–153. doi:10.1002/dta.3162. PMID   34515415. S2CID   237494122.
  10. Morris H, Wallach J (2014). "From PCP to MXE: a comprehensive review of the non-medical use of dissociative drugs". Drug Testing and Analysis. 6 (7–8): 614–632. doi:10.1002/dta.1620. PMID   24678061.
  11. "Article 1". Aggiornamento delle tabelle contenenti l'indicazione delle sostanze stupefacenti e psicotrope, di cui al decreto del Presidente della Repubblica 9 ottobre 1990, n. 309 e successive modificazioni ed integrazioni. Inserimento nella tabella I e nella tabella IV di nuove sostanze psicoattive (in Italian). March 13, 2020.
  12. "指定薬物一覧" (PDF) (in Japanese). Ministry of Health, Labour and Welfare
  13. "Noteikumi par Latvijā kontrolējamajām narkotiskajām vielām, psihotropajām vielām un prekursoriem" (in Latvian). Latvijas Republikas tiesību akti.
  14. "Misuse of Drugs Act – Singapore Statutes Online". sso.agc.gov.sg.
  15. "Förordning (1999:58) om förbud mot vissa hälsofarliga varor Svensk författningssamling 1999:1999:58 t.o.m. SFS 2019:631 – Riksdagen". Riksdagsförvaltningen (in Swedish). www.riksdagen.se.
  16. "Verordnung des EDI über die Verzeichnisse der Betäubungsmittel, psychotropen Stoffe, Vorläuferstoffe und Hilfschemikalien" (in German). Der Bundesrat.
  17. "Controlled Drugs and Substances Act (S.C. 1996, c. 19)". March 18, 2021.
  18. de Schutter A, Evenepoel T, Schrooten J (2019). Dossier Nieuwe Psychoactieve Stoffen. Brussel: VAD.
  19. "Misuse of Drugs Act 1971" . Retrieved March 7, 2021.
  20. "World Health Organization recommends five NPS for scheduling" . Retrieved January 22, 2024.