British Rail 18000

Last updated

British Rail 18000
BR18000.jpg
British Rail 18000
at Didcot Railway Centre on 6 August 2011
Type and origin
Power typeGas turbine-electric
Builder Brown, Boveri & Cie and
Swiss Locomotive and Machine Works
Order numberGWR Lot 372
Serial numberBBC: 4559
SLM: 3977
Build date1949
Total produced1
Specifications
Configuration:
   UIC (A1A)(A1A)
Driver dia.4 ft 0+14 in (1,226 mm)
Trailing dia. 3 ft 2 in (965 mm)
Loco weight115.18 long tons (117.03 t; 129.00 short tons)
Engine type Gas turbine
Generator DC
Traction motors Four DC
TransmissionElectric
Train heating Steam generator
Performance figures
Maximum speed90 mph (145 km/h)
Power output2,500  hp (1,900 kW)
Tractive effort 31,500 lbf (140,000 N)
Career
Operators British Railways
Power classBR: 4
NicknamesKerosene Castle
DispositionPreserved

British Rail 18000 was a prototype mainline gas turbine-electric locomotive built for British Railways in 1949 by Brown, Boveri & Cie. An earlier gas-turbine locomotive, 18100, had been ordered from Metropolitan-Vickers by the Great Western Railway but construction was delayed due to World War II; a second, 18000, was thus ordered from Switzerland in 1946. [1] It spent its working life on the Western Region of British Railways, operating express passenger services from Paddington station, London.

Contents

Overview

The GWR chose a gas-turbine locomotive because, at the time, there was no single-unit diesel locomotive of sufficient power available. The King class steam locomotive could deliver about 2,500 horsepower (1,900 kW) at the rail. The LMS diesel locomotives had engines of only 1,600 hp (1,200 kW). After allowing for transmission losses, this would be down to about 1,300 hp (970 kW) at the rail, so two diesels would be needed to match a King.

No. 18000 was of A1A-A1A wheel arrangement and its gas turbine was rated at 2,500 hp (1,900 kW). It had a maximum speed of 90 miles per hour (145 km/h) and weighed 115 long tons (117 t; 129 short tons). It was painted in BR black livery, with a silver stripe around the middle of the body and silver numbers.

Technical details

Gas turbine

The gas turbine was a Brown Boveri industrial machine. It was of a type which would now be called a turboshaft engine but differed from modern free-turbine turboshaft engines in having only one turbine to drive both the compressor and the output shaft. The emphasis was on fuel economy so it had a heat exchanger (to recover waste heat from the exhaust) and was designed to run on cheap heavy fuel oil (it was also able to burn light oil but this was intended only for startup purposes). This was the same fuel that was used in oil-fired steam locomotives. After leaving the heat exchanger, the pre-heated air entered a large, vertical, combustion chamber where the fuel was injected and burned.

Auxiliary diesel engine

There was also an auxiliary diesel engine which provided power for starting the gas turbine. The diesel engine was capable of moving the locomotive at a slow speed when the gas turbine was not running. The usual procedure was to run the locomotive from the shed to Paddington station using the diesel engine and to start the gas turbine only a few minutes before the train was due to leave. This saved fuel and minimised annoyance from noise and exhaust fumes.

Problems

It proved a troublesome machine in service. Ash from the heavy fuel oil damaged the turbine blades, and the combustion chamber liner required frequent replacement due to damage. The electrical control systems were extremely complex for the time and gave much trouble; maintenance of the electrical equipment in a steam locomotive environment and knowledge base was difficult. Part way through its life one of the traction motors failed and instead of repairing or replacing it, it was simply removed, leaving the locomotive with only three traction motors and preventing it from achieving its full power output. It also suffered from the destruction of its heat exchanger in a fire at Temple Meads when combustion deposits in the exhaust side of the heat exchanger ignited.

Fuel costs

It was also much more expensive to run than expected. The efficiency of a gas turbine reduces dramatically at low power outputs so, to achieve respectable fuel economy, a gas turbine locomotive needs to be operated as much as possible at full power, with periods of part-load running reduced to a minimum. However, it turned out that, even on demanding express passenger schedules, it was not possible to operate the locomotive on full power for very much of the run and extended periods of part-load operation were inevitable, which resulted in heavy fuel consumption. It was also sometimes operated on the much more expensive and scarce light oil normally used only for starting, due to the level of wear caused by the ash from heavy fuel oil.

Performance

When reliable operation could be achieved, it did show itself capable of meeting expectations. Unfortunately, however, it was neither possible to achieve a consistently acceptable level of reliability nor to operate it under conditions which would allow reasonable fuel economy.

Comparison of 18000 and 18100

The following table gives a comparison between 18000 and 18100. There are some anomalies and these are described in the notes.

Value1800018100Notes
Weight (Long tons)115 long tons (117  t ; 129 short tons )129 long tons (131 t; 144 short tons)-
Turbine horsepower (kW)10,300  hp (7,700  kW )9,000 hp (6,700 kW) [lower-roman 1]
Power absorbed by compressor (kW)7,800 hp (5,800 kW)6,000 hp (4,500 kW) [lower-roman 1]
Output horsepower (kW)2,500 hp (1,900 kW)3,000 hp (2,200 kW) [lower-roman 1]
Number of traction motors46-
Total traction motor horsepower (kW)2,500 hp (1,900 kW)2,450 hp (1,830 kW) [lower-roman 2]
Starting tractive effort (lbf)31,500  lbf (140,000  N )60,000 lbf (270,000 N) [lower-roman 3]

Post-BR use

18000 at Bellinzona, Switzerland (1967) ETH-BIB SIK 01-002718 BR 18000 Bellinzona 1967.jpg
18000 at Bellinzona, Switzerland (1967)
18000 at Vienna in 1989 18000 Vienna.jpg
18000 at Vienna in 1989

At the end of 1960, 18000 was withdrawn from operation and was stored at Swindon Works for four years. It then returned to mainland Europe, where for more than ten years it was used, in substantially altered (and no longer gas-turbine-powered) form, for experiments concerning the interaction between steel wheels and steel rails, under the auspices of the International Union of Railways. In 1975 it was moved to Vienna and displayed outside the Mechanical Engineering Testing building of the Arsenal research centre.

Preservation

British Rail 18000 at Barrow Hill in 2009 BR GWR 18000 (2).JPG
British Rail 18000 at Barrow Hill in 2009

In the early 1990s it was secured for preservation. It returned to the UK and was kept at The Railway Age, Crewe. It was then moved to Barrow Hill Engine Shed and was repainted in green livery.

Exhibited at Gloucestershire Warwickshire Railway

In mid-April 2010 it was delivered to the Gloucestershire Warwickshire Railway in order to take part (as a static exhibit) in the celebrations for the 175th birthday of the Great Western Railway from 29 May to 6 June 2010.

Moved to Didcot Railway Centre

Since then, it has moved to Didcot. It arrived at the yard, west of Didcot Parkway railway station, on 20 July 2011 and was moved into Didcot Railway Centre on 29 July 2011. It is now owned by the Pete Waterman Trust. [2]

Models

British Rail 18000 in N scale N Scale Gas Turbine.jpg
British Rail 18000 in N scale

18000 is made as a kit and ready-to-run in OO gauge by Silver Fox Models. [3] A further ready-to run version is planned in 2020 by Rails of Sheffield. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Locomotive</span> Self-propelled railway vehicle

A locomotive or engine is a rail transport vehicle that provides the motive power for a train. If a locomotive is capable of carrying a payload, it is usually rather referred to as a multiple unit, motor coach, railcar or power car; the use of these self-propelled vehicles is increasingly common for passenger trains, but rare for freight trains.

<span class="mw-page-title-main">Gas turbine</span> Type of internal and continuous combustion engine

A gas turbine,gas turbine engine, or also known by its old name internal combustion turbine, is a type of continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part and are, in the direction of flow:

<span class="mw-page-title-main">Aircraft engine</span> Engine designed for use in powered aircraft

An aircraft engine, often referred to as an aero engine, is the power component of an aircraft propulsion system. Aircraft using power components are referred to as powered flight. Most aircraft engines are either piston engines or gas turbines, although a few have been rocket powered and in recent years many small UAVs have used electric motors.

<span class="mw-page-title-main">Diesel locomotive</span> Locomotive powered by a diesel engine

A diesel locomotive is a type of railway locomotive in which the power source is a diesel engine. Several types of diesel locomotives have been developed, differing mainly in the means by which mechanical power is conveyed to the driving wheels. The most common are diesel-electric locomotives and diesel-hydraulic.

<span class="mw-page-title-main">Brayton cycle</span> Thermodynamic cycle

The Brayton cycle is a thermodynamic cycle that describes the operation of certain heat engines that have air or some other gas as their working fluid. The original Brayton Ready Motor used a piston compressor and piston expander, but modern gas turbine engines and airbreathing jet engines also follow the Brayton cycle. Although the cycle is usually run as an open system, it is conventionally assumed for the purposes of thermodynamic analysis that the exhaust gases are reused in the intake, enabling analysis as a closed system.

<span class="mw-page-title-main">Turboshaft</span> Gas turbine used to spin a shaft

A turboshaft engine is a form of gas turbine that is optimized to produce shaft horsepower rather than jet thrust. In concept, turboshaft engines are very similar to turbojets, with additional turbine expansion to extract heat energy from the exhaust and convert it into output shaft power. They are even more similar to turboprops, with only minor differences, and a single engine is often sold in both forms.

<span class="mw-page-title-main">British Rail GT3</span> Gas turbine locomotive built by English Electric

GT3 was a prototype mainline gas turbine locomotive built in 1961 by English Electric at its Vulcan Foundry in Newton-le-Willows to investigate the use of its gas turbines in rail traction applications. It followed 18000 and 18100 as gas turbines 1 and 2. It was designed by English Electric engineer J. O. P. Hughes in a project that started in the early 1950s. Externally it resembled a steam tender locomotive, but the tender carried kerosene fuel. The designer said the traditional chassis and mechanical transmission avoided complications with relatively untried technologies for bogies and electrical transmission.

<span class="mw-page-title-main">British Rail Class 80</span> Prototype 25 kV AC electric locomotive

Class 80 was the TOPS classification allocated by British Rail to the prototype 25 kV AC electric locomotive. This locomotive was built by Metropolitan-Vickers, initially as a prototype gas turbine-electric locomotive, numbered 18100. British Rail allocated the number E1000 to the locomotive following its conversion from gas turbine propulsion.

<span class="mw-page-title-main">Crossley</span> British internal combustion engine manufacturer

Crossley, based in Manchester, United Kingdom, was a pioneering company in the production of internal combustion engines. Since 1988, it has been part of the Rolls-Royce Power Engineering group.

<span class="mw-page-title-main">Gas turbine locomotive</span> Type of railway locomotive

A gas turbine locomotive is a type of railway locomotive in which the prime mover is a gas turbine. Several types of gas turbine locomotive have been developed, differing mainly in the means by which mechanical power is conveyed to the driving wheels (drivers). A gas turbine train typically consists of two power cars, and one or more intermediate passenger cars.

<span class="mw-page-title-main">British Rail 18100</span>

British Rail 18100 was a prototype main line gas turbine-electric locomotive built for British Railways in 1951 by Metropolitan-Vickers, Manchester. It had, however, been ordered by the Great Western Railway in the 1940s, but construction was delayed due to World War II. It spent its working life on the Western Region of British Railways, operating express passenger services from Paddington station, London.

The BMW GT 101 was a turboshaft-type gas turbine engine developed from the BMW 003 aviation engine, that was considered for installation in Nazi Germany's Panther tank. The German Army's development division, the Heereswaffenamt, studied a number of gas turbine engines for use in tanks starting in mid-1944. Although none of these was fitted operationally, the GT 101 reached a production quality stage of development. Several designs were produced over the lifetime of the program, including the GT 102 and GT 103.

<span class="mw-page-title-main">Union Pacific GTELs</span> Fleet of gas turbine-electric locomotives

The Union Pacific GTELs were a series of gas turbine-electric locomotives built by Alco-GE and General Electric between 1952-1961 and operated by Union Pacific from 1952 to 1970.

<span class="mw-page-title-main">SBB-CFF-FFS Am 4/6 1101</span>

Am 4/6 1101 was the world's first gas turbine-electric locomotive. The locomotive was ordered by the Swiss Federal Railways (SBB-CFF-FFS) from the Swiss Locomotive and Machine Works (SLM) and Brown, Boveri & Cie (BBC) in 1939. The locomotive was delivered in 1941 and was in use on railroads in Switzerland, France and Germany until 1954.

<span class="mw-page-title-main">Advanced steam technology</span> Evolution of steam power beyond mainstream mid-20th-century implementations

Advanced steam technology reflects an approach to the technical development of the steam engine intended for a wider variety of applications than has recently been the case. Particular attention has been given to endemic problems that led to the demise of steam power in small- to medium-scale commercial applications: excessive pollution, maintenance costs, labour-intensive operation, low power/weight ratio, and low overall thermal efficiency; where steam power has generally now been superseded by the internal combustion engine or by electrical power drawn from an electrical grid. The only steam installations that are in widespread use are the highly efficient thermal power plants used for generating electricity on a large scale. In contrast, the proposed steam engines may be for stationary, road, rail or marine use.

Bowesfield Works was a railway locomotive manufacturing plant in Stockton-on-Tees. The works was operated by a joint venture company called Metropolitan Vickers-Beyer Peacock from 1949 until 1960.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.

<span class="mw-page-title-main">Turbine-electric powertrain</span>

A turbine–electric transmission system includes a turboshaft gas turbine connected to an electrical generator, creating electricity that powers electric traction motors. No clutch is required.

<span class="mw-page-title-main">South African gas-electric locomotive</span>

The South African Railways gas-electric locomotive of 1923 was an experimental gas-electric locomotive. The fuel, suction gas, was generated on-board the locomotive from coal.

<span class="mw-page-title-main">Internal combustion locomotive</span> Railway locomotive that produces its pulling power through an internal combustion engine

An internal combustion locomotive is a type of railway locomotive that produces its pulling power using an internal combustion engine. These locomotives are fuelled by burning fossil fuels, most commonly oil or gasoline, to produce rotational power which is transmitted to the locomotive's driving wheels by various direct or indirect transmission mechanisms. The fuel is carried on the locomotive.

References

  1. 1 2 3 In 18000, output horsepower is 24% of total horsepower and in 18100, output horsepower is 33% of total horsepower. This suggests that 18100 had the higher thermal efficiency but, in practice, 18000 had the higher thermal efficiency. The horsepower figures should, therefore, be regarded with some scepticism.
  2. Where electric transmission is used, the horsepower of the traction motors is usually 81% (i.e. 90% x 90%) that of the prime mover. The figure for 18100 is therefore about right but the figure for 18000 looks anomalous.
  3. lbf = pound-force
  1. Hollingsworth, Brian; Cook, Arthur (2000). "Nº 18000 A1A-A1A". Modern Locomotives. Pavilion Books. pp. 94–95. ISBN   0-86288-351-2.
  2. "News | Didcot Railway Centre".
  3. "18000 A1A-A1A Brown-Boveri Gas Turbine". silverfoxmodels.co.uk. Archived from the original on 5 July 2017. Retrieved 26 July 2017.
  4. "18000 A1A-A1A Brown-Boveri Gas Turbine". Archived from the original on 10 May 2021. Retrieved 1 June 2020.

Further reading