Congenital rubella syndrome

Last updated
Congenital rubella syndrome
Cataracts due to Congenital Rubella Syndrome (CRS) PHIL 4284 lores.jpg
White pupils due to congenital cataracts in a child with congenital rubella syndrome
Specialty Teratology

Congenital rubella syndrome (CRS) occurs when an unborn baby is infected with the rubella virus (German measles) via maternal-fetal transmission and develops birth defects. [1] The most common congenital defects affect the ophthalmologic, cardiac, auditory, and neurologic systems. [2]

Contents

Rubella infection in pregnancy can result in various outcomes ranging from asymptomatic infection to congenital defects to miscarriage and fetal death. [3] [4] If infection occurs 0–11 weeks after conception, the infant has a 90% risk of being affected. [1] If the infection occurs 12–20 weeks after conception, the risk is 20%. Infants are not generally affected if rubella is contracted during the third trimester. [3] Diagnosis of congenital rubella syndrome is made through a series of clinical and laboratory findings and management is based on the infant’s clinical presentation. Maintaining rubella outbreak control via vaccination is essential in preventing congenital rubella infection and congenital rubella syndrome. [3]

Congenital rubella syndrome was discovered in 1941 by Australian Norman McAlister Gregg. [5]

Signs and symptoms

Infant with skin lesions from congenital rubella Infant with skin lesions from congenital rubella.jpg
Infant with skin lesions from congenital rubella
"Salt-and-pepper" retinopathy is characteristic of congenital rubella. Congenital Rubella Syndrome, Salt and Pepper Retinopathy.jpg
"Salt-and-pepper" retinopathy is characteristic of congenital rubella.

The classic triad for congenital rubella syndrome is: [8]

Other manifestations of CRS may include:

Children who have been exposed to rubella in the womb should also be watched closely as they age for any indication of:

Diagnosis

Congenital rubella serology timeline Rubella serology.png
Congenital rubella serology timeline

Diagnosis of congenital rubella syndrome is made based on clinical findings and laboratory criteria. [3] Laboratory criteria includes at least one of the following:

Clinical definition is characterized by findings in the following categories:

  1. Cataracts/congenital glaucoma, congenital heart disease (most commonly, patent ductus arteriosus or peripheral pulmonary artery stenosis), hearing impairment, pigmentary retinopathy
  2. Purpura, hepatosplenomegaly, jaundice, microcephaly, developmental delay, meningoencephalitis, radiolucent bone disease

A patient is classified into the following cases depending on their clinical and laboratory findings: [3]

Prevention

Vaccinating the majority of the population is effective at preventing congenital rubella syndrome. [25] With the introduction of the rubella vaccine in 1969, the number of cases of rubella in the United States has decreased 99%, from 57,686 cases in 1969 to 271 cases in 1999. [3] For women who plan to become pregnant, the MMR (measles mumps, rubella) vaccination is highly recommended, at least 28 days prior to conception. [17] The vaccine should not be given to women who are already pregnant as it contains live viral particles. [17] Other preventative actions can include the screening and vaccinations of high-risk personnel, such as medical and child care professions. [26]

Infants with birth defects suspected to be caused by congenital rubella infection should be investigated thoroughly. Confirmed cases should be reported to the local or state health department to assess control of the virus and isolation of the infant should be maintained. [27]

Management

Infants with known rubella exposure during pregnancy or those with a confirmed or suspected infection should receive close follow-up and supportive care. There are no medications or antivirals that will shorten the clinical course of the virus. [4] Only those with immunity to rubella should have contact with infected infants, as they can shed viral particles in their respiratory secretions though 1 year of age (unless they test with repeated negative viral cultures at age 3 months). [3] Many infants can be born with multiple birth defects that require multidisciplinary management and interventions based on clinical manifestations. Often these infants will require extended period or life-long follow up with medical specialists. Early diagnosis of congenital rubella syndrome is important for planning future medical care and educational placement. [19]

Auditory Care

Many infants with CRS may be born with sensorineural deafness and thus should undergo a newborn hearing evaluation. Hearing loss may not be apparent at birth and thus requires close auditory follow up. Infants with confirmed hearing impairment may require hearing aids and may benefit from an early intervention program. [4]

Ophthalmologic Care

Eye abnormalities including cataracts, infantile glaucoma and retinopathy are common in infants born with CRS. [27] Infants should undergo eye examinations after birth and during early childhood. Those with congenital eye defects require care from a pediatric ophthalmologist for specialized care and follow up. [4]

Cardiac Care

Congenital cardiac anomalies including pulmonary artery stenosis and patent ductus arteriosus can be seen in infants with CRS. Infants should undergo cardiac evaluation soon after birth and those with confirmed cardiac lesions will require specialized care with a pediatric cardiologist for any interventions and follow-up care. [4]

Related Research Articles

<span class="mw-page-title-main">Measles</span> Viral disease affecting humans

Measles is a highly contagious, vaccine-preventable infectious disease caused by measles virus. Symptoms usually develop 10–12 days after exposure to an infected person and last 7–10 days. Initial symptoms typically include fever, often greater than 40 °C (104 °F), cough, runny nose, and inflamed eyes. Small white spots known as Koplik's spots may form inside the mouth two or three days after the start of symptoms. A red, flat rash which usually starts on the face and then spreads to the rest of the body typically begins three to five days after the start of symptoms. Common complications include diarrhea, middle ear infection (7%), and pneumonia (6%). These occur in part due to measles-induced immunosuppression. Less commonly seizures, blindness, or inflammation of the brain may occur. Other names include morbilli, rubeola, red measles, and English measles. Both rubella, also known as German measles, and roseola are different diseases caused by unrelated viruses.

<span class="mw-page-title-main">Rubella</span> Human viral disease

Rubella, also known as German measles or three-day measles, is an infection caused by the rubella virus. This disease is often mild, with half of people not realizing that they are infected. A rash may start around two weeks after exposure and last for three days. It usually starts on the face and spreads to the rest of the body. The rash is sometimes itchy and is not as bright as that of measles. Swollen lymph nodes are common and may last a few weeks. A fever, sore throat, and fatigue may also occur. Joint pain is common in adults. Complications may include bleeding problems, testicular swelling, encephalitis, and inflammation of nerves. Infection during early pregnancy may result in a miscarriage or a child born with congenital rubella syndrome (CRS). Symptoms of CRS manifest as problems with the eyes such as cataracts, deafness, as well as affecting the heart and brain. Problems are rare after the 20th week of pregnancy.

Teratology is the study of abnormalities of physiological development in organisms during their life span. It is a sub-discipline in medical genetics which focuses on the classification of congenital abnormalities in dysmorphology caused by teratogens. Teratogens are substances that may cause non-heritable birth defects via a toxic effect on an embryo or fetus. Defects include malformations, disruptions, deformations, and dysplasia that may cause stunted growth, delayed mental development, or other congenital disorders that lack structural malformations. The related term developmental toxicity includes all manifestations of abnormal development that are caused by environmental insult. The extent to which teratogens will impact an embryo is dependent on several factors, such as how long the embryo has been exposed, the stage of development the embryo was in when exposed, the genetic makeup of the embryo, and the transfer rate of the teratogen.

<span class="mw-page-title-main">Tetralogy of Fallot</span> Type of congenital heart defect

Tetralogy of Fallot (TOF), formerly known as Steno-Fallot tetralogy, is a congenital heart defect characterized by four specific cardiac defects. Classically, the four defects are:

<span class="mw-page-title-main">Birth defect</span> Condition present at birth regardless of cause

A birth defect, also known as a congenital disorder, is an abnormal condition that is present at birth regardless of its cause. Birth defects may result in disabilities that may be physical, intellectual, or developmental. The disabilities can range from mild to severe. Birth defects are divided into two main types: structural disorders in which problems are seen with the shape of a body part and functional disorders in which problems exist with how a body part works. Functional disorders include metabolic and degenerative disorders. Some birth defects include both structural and functional disorders.

<span class="mw-page-title-main">Patent ductus arteriosus</span> Condition wherein the ductus arteriosus fails to close after birth

Patent ductus arteriosus (PDA) is a medical condition in which the ductus arteriosus fails to close after birth: this allows a portion of oxygenated blood from the left heart to flow back to the lungs through the aorta, which has a higher blood pressure, to the pulmonary artery, which has a lower blood pressure. Symptoms are uncommon at birth and shortly thereafter, but later in the first year of life there is often the onset of an increased work of breathing and failure to gain weight at a normal rate. With time, an uncorrected PDA usually leads to pulmonary hypertension followed by right-sided heart failure.

<span class="mw-page-title-main">Congenital heart defect</span> Defect in the structure of the heart that is present at birth

A congenital heart defect (CHD), also known as a congenital heart anomaly, congenital cardiovascular malformation, and congenital heart disease, is a defect in the structure of the heart or great vessels that is present at birth. A congenital heart defect is classed as a cardiovascular disease. Signs and symptoms depend on the specific type of defect. Symptoms can vary from none to life-threatening. When present, symptoms are variable and may include rapid breathing, bluish skin (cyanosis), poor weight gain, and feeling tired. CHD does not cause chest pain. Most congenital heart defects are not associated with other diseases. A complication of CHD is heart failure.

<span class="mw-page-title-main">Neonatology</span> Medical care of newborns, especially the ill or premature

Neonatology is a subspecialty of pediatrics that consists of the medical care of newborn infants, especially the ill or premature newborn. It is a hospital-based specialty and is usually practised in neonatal intensive care units (NICUs). The principal patients of neonatologists are newborn infants who are ill or require special medical care due to prematurity, low birth weight, intrauterine growth restriction, congenital malformations, sepsis, pulmonary hypoplasia, or birth asphyxia.

<span class="mw-page-title-main">Hypoplastic left heart syndrome</span> Type of congenital heart defect

Hypoplastic left heart syndrome (HLHS) is a rare congenital heart defect in which the left side of the heart is severely underdeveloped and incapable of supporting the systemic circulation. It is estimated to account for 2-3% of all congenital heart disease. Early signs and symptoms include poor feeding, cyanosis, and diminished pulse in the extremities. The etiology is believed to be multifactorial resulting from a combination of genetic mutations and defects resulting in altered blood flow in the heart. Several structures can be affected including the left ventricle, aorta, aortic valve, or mitral valve all resulting in decreased systemic blood flow.

<span class="mw-page-title-main">Vertically transmitted infection</span> Infection caused by pathogens that use mother-to-children transmission

A vertically transmitted infection is an infection caused by pathogenic bacteria or viruses that use mother-to-child transmission, that is, transmission directly from the mother to an embryo, fetus, or baby during pregnancy or childbirth. It can occur when the mother has a pre-existing disease or becomes infected during pregnancy. Nutritional deficiencies may exacerbate the risks of perinatal infections. Vertical transmission is important for the mathematical modelling of infectious diseases, especially for diseases of animals with large litter sizes, as it causes a wave of new infectious individuals.

Interrupted aortic arch is a very rare heart defect in which the aorta is not completely developed. There is a gap between the ascending and descending thoracic aorta. In a sense it is the complete form of a coarctation of the aorta. Almost all patients also have other cardiac anomalies, including a ventricular septal defect (VSD), aorto-pulmonary window, and truncus arteriosus. There are three types of interrupted aortic arch, with type B being the most common. Interrupted aortic arch is often associated with DiGeorge syndrome.

Immunization during pregnancy is the administration of a vaccine to a pregnant individual. This may be done either to protect the individual from disease or to induce an antibody response, such that the antibodies cross the placenta and provide passive immunity to the infant after birth. In many countries, including the US, Canada, UK, Australia and New Zealand, vaccination against influenza, COVID-19 and whooping cough is routinely offered during pregnancy.

An attenuated vaccine is a vaccine created by reducing the virulence of a pathogen, but still keeping it viable. Attenuation takes an infectious agent and alters it so that it becomes harmless or less virulent. These vaccines contrast to those produced by "killing" the pathogen.

<span class="mw-page-title-main">Zika fever</span> Infectious disease caused by the Zika virus

Zika fever, also known as Zika virus disease or simply Zika, is an infectious disease caused by the Zika virus. Most cases have no symptoms, but when present they are usually mild and can resemble dengue fever. Symptoms may include fever, red eyes, joint pain, headache, and a maculopapular rash. Symptoms generally last less than seven days. It has not caused any reported deaths during the initial infection. Mother-to-child transmission during pregnancy can cause microcephaly and other brain malformations in some babies. Infections in adults have been linked to Guillain–Barré syndrome (GBS).

The central nervous system (CNS) controls most of the functions of the body and mind. It comprises the brain, spinal cord and the nerve fibers that branch off to all parts of the body. The CNS viral diseases are caused by viruses that attack the CNS. Existing and emerging viral CNS infections are major sources of human morbidity and mortality.

<span class="mw-page-title-main">Rubella vaccine</span> Vaccine used to prevent rubella

Rubella vaccine is a vaccine used to prevent rubella. Effectiveness begins about two weeks after a single dose and around 95% of people become immune. Countries with high rates of immunization no longer see cases of rubella or congenital rubella syndrome. When there is a low level of childhood immunization in a population it is possible for rates of congenital rubella to increase as more women make it to child-bearing age without either vaccination or exposure to the disease. Therefore, it is important for more than 80% of people to be vaccinated. By introducing rubella containing vaccines, rubella has been eradicated in 81 nations, as of mid-2020.

<span class="mw-page-title-main">Blueberry muffin baby</span> Medical condition

Blueberry muffin baby, also known as extramedullary hematopoiesis, describes a newborn baby with multiple purpura, associated with several non-cancerous and cancerous conditions in which extra blood is produced in the skin. The bumps range from one to seven mm, do not blanch and have a tendency to occur on the head, neck and trunk. They often fade by three to six weeks after birth, leaving brownish marks. When due to a cancer, the bumps tend to be fewer, firmer and larger.

<span class="mw-page-title-main">Congenital cytomegalovirus infection</span> Medical condition

Congenital cytomegalovirus (cCMV) is cytomegalovirus (CMV) infection in a newborn baby. Most have no symptoms. Some affected babies are small. Other signs and symptoms include a rash, jaundice, hepatomegaly, retinitis, and seizures. It may lead to loss of hearing or vision, developmental disability, or a small head.

<span class="mw-page-title-main">Neonatal infection</span> Human disease

Neonatal infections are infections of the neonate (newborn) acquired during prenatal development or within the first four weeks of life. Neonatal infections may be contracted by mother to child transmission, in the birth canal during childbirth, or after birth. Neonatal infections may present soon after delivery, or take several weeks to show symptoms. Some neonatal infections such as HIV, hepatitis B, and malaria do not become apparent until much later. Signs and symptoms of infection may include respiratory distress, temperature instability, irritability, poor feeding, failure to thrive, persistent crying and skin rashes.

The 1962–1965 rubella epidemic was an outbreak of rubella across Europe and the United States.

References

  1. 1 2 Vesikari, Timo; Usonis, Vytautas (2021). "9. Measles-Mumps-Rubella vaccine". In Vesikari, Timo; Damme, Pierre Van (eds.). Pediatric Vaccines and Vaccinations: A European Textbook (Second ed.). Switzerland: Springer. pp. 82–83. ISBN   978-3-030-77172-0.
  2. 1 2 Rochester, Caitlin K.; Adams, Daniel J. (2022). "12. Rubella". In Jong, Elaine C.; Stevens, Dennis L. (eds.). Netter's Infectious Diseases (2nd ed.). Philadelphia: Elsevier. p. 53. ISBN   978-0-323-71159-3.
  3. 1 2 3 4 5 6 7 "Control and prevention of rubella: evaluation and management of suspected outbreaks, rubella in pregnant women, and surveillance for congenital rubella syndrome". MMWR. Recommendations and Reports. 50 (RR-12): 1–23. 2001-07-13. ISSN   1057-5987. PMID   11475328.
  4. 1 2 3 4 5 Arrieta, Antonio C. "Congenital rubella". www.uptodate.com. Retrieved 2023-02-09.
  5. Atkinson, William (2011). Epidemiology and Prevention of Vaccine-Preventable Diseases (12th ed.). Public Health Foundation. pp. 301–323. ISBN   9780983263135 . Retrieved 30 March 2015.
  6. Sudharshan S, Ganesh SK, Biswas J (2010). "Current approach in the diagnosis and management of posterior uveitis". Indian J Ophthalmol. 58 (1): 29–43. doi: 10.4103/0301-4738.58470 . ISSN   0301-4738. PMC   2841371 . PMID   20029144.
  7. Khurana, Rahul N.; Sadda, Srinivas R. (3 Aug 2006). "Salt-and-Pepper Retinopathy of Rubella". N Engl J Med . 355 (5): 499. doi:10.1056/NEJMicm040780. PMID   16885553.
  8. "Congenital rubella syndrome | Sense". www.sense.org.uk. Retrieved 2015-07-30.
  9. 1 2 3 4 Zimmerman, LA; Reef, SE (2022). "Rubella (German Measles)". In Loscalzo, Joseph; Fauci, A; Kasper, D; Hauser, S; Longo, D; Jameson, J (eds.). Harrison's Principles of Internal Medicine (21st ed.). McGraw-Hill Education.
  10. 1 2 "Pregnancy and Rubella". Centers for Disease Control and Prevention. Atlanta, Georgia. 2024. Retrieved January 28, 2024.
  11. 1 2 3 4 5 6 Winter, Amy K.; Moss, William J. (2022-04-02). "Rubella". Lancet (London, England). 399 (10332): 1336–1346. doi:10.1016/S0140-6736(21)02691-X. ISSN   1474-547X. PMID   35367004. S2CID   247846943.
  12. Duszak, Robert S. (January 2009). "Congenital rubella syndrome--major review". Optometry (St. Louis, Mo.). 80 (1): 36–43. doi:10.1016/j.optm.2008.03.006. ISSN   1558-1527. PMID   19111256.
  13. Kumar Panda, Prateek (2019). "Diabetic ketoacidosis in a child with congenital rubella syndrome: A case report and review of literature". Diabetes & Metabolic Syndrome. 13 (4): 2473–2475. doi:10.1016/j.dsx.2019.06.026. ISSN   1878-0334. PMID   31405663. S2CID   198296894.
  14. 1 2 Shukla, Samarth; Maraqa, Nizar F. (2024), "Congenital Rubella", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID   29939656 , retrieved 2024-01-28
  15. Oster ME, Riehle-Colarusso T, Correa A (January 2010). "An update on cardiovascular malformations in congenital rubella syndrome". Birth Defects Research Part A: Clinical and Molecular Teratology. 88 (1): 1–8. doi:10.1002/bdra.20621. PMID   19697432.
  16. Das, Pratyush Kumar; Kielian, Margaret (2021-04-26). "Molecular and Structural Insights into the Life Cycle of Rubella Virus". Journal of Virology. 95 (10): e02349–20, JVI.02349–20. doi:10.1128/JVI.02349-20. ISSN   1098-5514. PMC   8139664 . PMID   33627388.
  17. 1 2 3 4 5 "Congenital Rubella Symptoms & Causes | Boston Children's Hospital". www.childrenshospital.org. Retrieved 2019-03-05.
  18. 1 2 3 4 5 Mawson, Anthony R.; Croft, Ashley M. (2019-09-22). "Rubella Virus Infection, the Congenital Rubella Syndrome, and the Link to Autism". International Journal of Environmental Research and Public Health. 16 (19): 3543. doi: 10.3390/ijerph16193543 . ISSN   1660-4601. PMC   6801530 . PMID   31546693.
  19. 1 2 3 4 5 Leung, A. K. C.; Hon, K. L.; Leong, K. F. (April 2019). "Rubella (German measles) revisited". Hong Kong Medical Journal = Xianggang Yi Xue Za Zhi. 25 (2): 134–141. doi: 10.12809/hkmj187785 . ISSN   1024-2708. PMID   30967519.
  20. Muhle, R; Trentacoste, SV; Rapin, I (May 2004). "The genetics of autism". Pediatrics. 113 (5): e472–86. doi:10.1542/peds.113.5.e472. PMID   15121991. S2CID   6077170.
  21. Brown, A. S (9 February 2006). "Prenatal Infection as a Risk Factor for Schizophrenia". Schizophrenia Bulletin. 32 (2): 200–202. doi:10.1093/schbul/sbj052. PMC   2632220 . PMID   16469941.
  22. Naeye, Richard L. (1965-12-20). "Pathogenesis of congenital rubella". JAMA. 194 (12): 1277–1283. doi:10.1001/jama.1965.03090250011002. ISSN   0098-7484. PMID   5898080.
  23. 1 2 Terracciano, E; Amadori, F; Pettinicchio, V; Zaratti, L; Franco, E (2020-04-02). "Strategies for elimination of rubella in pregnancy and of congenital rubella syndrome in high and upper-middle income countries". J Prev Med Hyg. 61 (1): E98–E108. PMC   7225652 . PMID   32490275.
  24. Forrest, Jill M.; Menser, Margaret A.; Burgess, J. A. (1971-08-14). "High Frequency of Diabetes Mellitus in Young Adults with Congenital Rubella". The Lancet. 298 (7720): 332–334. doi:10.1016/S0140-6736(71)90057-2. PMID   4105044.
  25. "Rubella vaccines: WHO position paper" (PDF). Wkly Epidemiol Rec. 86 (29): 301–16. 15 July 2011. PMID   21766537.
  26. "Congenital Rubella - Pediatrics". Merck Manuals Professional Edition. Retrieved 2019-03-05.
  27. 1 2 "Rubella", Red Book (2021), American Academy of Pediatrics, pp. 648–655, 2021-05-17, doi:10.1542/9781610025225-part03-ch120, ISBN   978-1-61002-522-5 , retrieved 2023-02-09