Diastereomer

Last updated
Diastereomers that are also epimers
D-threose.svg D-erythrose.svg
DThreose Fischer.svg DErythrose Fischer.svg
D-Threose D-Erythrose

In stereochemistry, diastereomers (sometimes called diastereoisomers) are a type of stereoisomer. [1] Diastereomers are defined as non-mirror image, non-identical stereoisomers. Hence, they occur when two or more stereoisomers of a compound have different configurations at one or more (but not all) of the equivalent (related) stereocenters and are not mirror images of each other. [2] When two diastereoisomers differ from each other at only one stereocenter, they are epimers. Each stereocenter gives rise to two different configurations and thus typically increases the number of stereoisomers by a factor of two.

Contents

Diastereomers differ from enantiomers in that the latter are pairs of stereoisomers that differ in all stereocenters and are therefore mirror images of one another. [3] Enantiomers of a compound with more than one stereocenter are also diastereomers of the other stereoisomers of that compound that are not their mirror image (that is, excluding the opposing enantiomer). Diastereomers have different physical properties (unlike most aspects of enantiomers) and often different chemical reactivity.

Diastereomers differ not only in physical properties but also in chemical reactivity — how a compound reacts with others. Glucose and galactose, for instance, are diastereomers. Even though they share the same molar weight, glucose is more stable than galactose. This difference in stability causes galactose to be absorbed slightly faster than glucose in human body. [4] [5]

Diastereoselectivity is the preference for the formation of one or more than one diastereomer over the other in an organic reaction. In general, stereoselectivity is attributed to torsional and steric interactions in the stereocenter resulting from electrophiles approaching the stereocenter in reaction. [6]

Syn / anti

When the single bond between the two centres is free to rotate, cis/trans descriptors become invalid. Two widely accepted prefixes used to distinguish diastereomers on sp³-hybridised bonds in an open-chain molecule are syn and anti. Masamune proposed the descriptors which work even if the groups are not attached to adjacent carbon atoms. It also works regardless of CIP priorities. Syn describes groups on the same face while anti describes groups on opposite faces. The concept applies only to the Zigzag projection. The descriptors only describe relative stereochemistry rather than absolute stereochemistry. All isomers are same.

Erythro / threo

Two older prefixes still commonly used to distinguish diastereomers are threo and erythro. In the case of saccharides, when drawn in the Fischer projection the erythro isomer has two identical substituents on the same side and the threo isomer has them on opposite sides. [7] When drawn as a zig-zag chain, the erythro isomer has two identical substituents on different sides of the plane (anti). The names are derived from the diastereomeric four-carbon aldoses erythrose and threose. These prefixes are not recommended for use outside of the realm of saccharides because their definitions can lead to conflicting interpretations. [8]

Another threo compound is threonine, one of the essential amino acids. The erythro diastereomer is called allothreonine.

L-Threonin - L-Threonine.svg   D-Threonine.svg
L-Threonine (2S,3R) and D-Threonine (2R,3S)
L-allo-Threonine.svg   D-allo-Threonine.svg
L-Allothreonine (2S,3S) and D-Allothreonine (2R,3R)

Multiple stereocenters

If a molecule contains two asymmetric centers, there are up to four possible configurations, and they cannot all be non-superposable mirror images of each other. The possibilities for different isomers continue to multiply as more stereocenters are added to a molecule. In general, the number of stereoisomers of a molecule can be determined by calculating 2n, where n = the number of chiral centers in the molecule. This holds true except in cases where the molecule has meso forms. These meso compounds are molecules that contain stereocenters, but possess an internal plane of symmetry allowing it to be superposed on its mirror image. These equivalent configurations cannot be considered diastereomers. [9]

For n = 3, there are eight stereoisomers. Among them, there are four pairs of enantiomers: R,R,R and S,S,S; R,R,S and S,S,R; R,S,S and S,R,R; and R,S,R and S,R,S. There are many more pairs of diastereomers, because each of these configurations is a diastereomer with respect to every other configuration excluding its own enantiomer (for example, R,R,R is a diastereomer of R,R,S; R,S,R; and R,S,S). For n = 4, there are sixteen stereoisomers, or eight pairs of enantiomers. The four enantiomeric pairs of aldopentoses and the eight enantiomeric pairs of aldohexoses (subsets of the five- and six-carbon sugars) are examples of sets of compounds that differ in this way.

Diastereomerism at a double bond

Double bond isomers are always considered diastereomers, not enantiomers. Diastereomerism can also occur at a double bond, where the cis vs trans relative positions of substituents give two non-superposable isomers. Many conformational isomers are diastereomers as well.

In the case of diastereomerism occurring at a double bond, E-Z, or entgegen and zusammen (German), is used in notating nomenclature of alkenes. [10]

Applications

As stated previously, two diastereomers will not have identical chemical properties. This knowledge is harnessed in chiral synthesis to separate a mixture of enantiomers. This is the principle behind chiral resolution. After preparing the diastereomers, they are separated by chromatography or recrystallization. Note also the example of the stereochemistry of ketonization of enols and enolates.

See also

Related Research Articles

<span class="mw-page-title-main">Cahn–Ingold–Prelog priority rules</span> Naming convention for stereoisomers of molecules

In organic chemistry, the Cahn–Ingold–Prelog (CIP) sequence rules are a standard process to completely and unequivocally name a stereoisomer of a molecule. The purpose of the CIP system is to assign an R or S descriptor to each stereocenter and an E or Z descriptor to each double bond so that the configuration of the entire molecule can be specified uniquely by including the descriptors in its systematic name. A molecule may contain any number of stereocenters and any number of double bonds, and each usually gives rise to two possible isomers. A molecule with an integer n describing the number of stereocenters will usually have 2n stereoisomers, and 2n−1 diastereomers each having an associated pair of enantiomers. The CIP sequence rules contribute to the precise naming of every stereoisomer of every organic molecule with all atoms of ligancy of fewer than 4.

<i>Cis</i>–<i>trans</i> isomerism Pairs of molecules with same chemical formula showing different spatial orientations

Cistrans isomerism, also known as geometric isomerism, describes certain arrangements of atoms within molecules. The prefixes "cis" and "trans" are from Latin: "this side of" and "the other side of", respectively. In the context of chemistry, cis indicates that the functional groups (substituents) are on the same side of some plane, while trans conveys that they are on opposing (transverse) sides. Cistrans isomers are stereoisomers, that is, pairs of molecules which have the same formula but whose functional groups are in different orientations in three-dimensional space. Cis and trans isomers occur both in organic molecules and in inorganic coordination complexes. Cis and trans descriptors are not used for cases of conformational isomerism where the two geometric forms easily interconvert, such as most open-chain single-bonded structures; instead, the terms "syn" and "anti" are used.

<span class="mw-page-title-main">Stereoisomerism</span> When molecules have the same atoms and bond structure but differ in 3D orientation

In stereochemistry, stereoisomerism, or spatial isomerism, is a form of isomerism in which molecules have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms in space. This contrasts with structural isomers, which share the same molecular formula, but the bond connections or their order differs. By definition, molecules that are stereoisomers of each other represent the same structural isomer.

<span class="mw-page-title-main">Stereochemistry</span> Subdiscipline of chemistry

Stereochemistry, a subdiscipline of chemistry, involves the study of the relative spatial arrangement of atoms that form the structure of molecules and their manipulation. The study of stereochemistry focuses on the relationships between stereoisomers, which by definition have the same molecular formula and sequence of bonded atoms (constitution), but differ in the geometric positioning of the atoms in space. For this reason, it is also known as 3D chemistry—the prefix "stereo-" means "three-dimensionality".

<span class="mw-page-title-main">Enantiomer</span> Stereoisomers that are nonsuperposable mirror images of each other

In chemistry, an enantiomer – also called optical isomer, antipode, or optical antipode – is one of two stereoisomers that are nonsuperposable onto their own mirror image. Enantiomers are much like one's right and left hands; without mirroring one of them, hands cannot be superposed onto each other. No amount of reorientation in three spatial dimensions will allow the four unique groups on the chiral carbon to line up exactly. The number of stereoisomers a molecule has can be determined by the number of chiral carbons it has.

In chemistry, racemization is a conversion, by heat or by chemical reaction, of an optically active compound into a racemic form. This creates a 1:1 molar ratio of enantiomers and is referred to as a racemic mixture. Plus and minus forms are called Dextrorotation and levorotation. The D and L enantiomers are present in equal quantities, the resulting sample is described as a racemic mixture or a racemate. Racemization can proceed through a number of different mechanisms, and it has particular significance in pharmacology as different enantiomers may have different pharmaceutical effects.

<span class="mw-page-title-main">Stereocenter</span> Atom which is the focus of stereoisomerism in a molecule

In stereochemistry, a stereocenter of a molecule is an atom (center), axis or plane that is the focus of stereoisomerism; that is, when having at least three different groups bound to the stereocenter, interchanging any two different groups creates a new stereoisomer. Stereocenters are also referred to as stereogenic centers.

<span class="mw-page-title-main">Meso compound</span> Optically inactive isomer in a set of stereoisomers

A meso compound or meso isomer is an optically inactive isomer in a set of stereoisomers, at least two of which are optically active. This means that despite containing two or more stereocenters, the molecule is not chiral. A meso compound is superposable on its mirror image. Two objects can be superposed if all aspects of the objects coincide and it does not produce a "(+)" or "(-)" reading when analyzed with a polarimeter. The name is derived from the Greek mésos meaning “middle”.

In stereochemistry, an epimer is one of a pair of diastereomers. The two epimers have opposite configuration at only one stereogenic center out of at least two. All other stereogenic centers in the molecules are the same in each. Epimerization is the interconversion of one epimer to the other epimer.

<span class="mw-page-title-main">Chirality (chemistry)</span> Geometric property of some molecules and ions

In chemistry, a molecule or ion is called chiral if it cannot be superposed on its mirror image by any combination of rotations, translations, and some conformational changes. This geometric property is called chirality. The terms are derived from Ancient Greek χείρ (cheir) 'hand'; which is the canonical example of an object with this property.

<span class="mw-page-title-main">Threose</span> Chemical compound

Threose is a four-carbon monosaccharide with molecular formula C4H8O4. It has a terminal aldehyde group rather than a ketone in its linear chain, and so is considered part of the aldose family of monosaccharides. The threose name can be used to refer to both the D- and L-stereoisomers, and more generally to the racemic mixture (D/L-, equal parts D- and L-) as well as to the more generic threose structure (absolute stereochemistry unspecified).

In chemistry, stereoselectivity is the property of a chemical reaction in which a single reactant forms an unequal mixture of stereoisomers during a non-stereospecific creation of a new stereocenter or during a non-stereospecific transformation of a pre-existing one. The selectivity arises from differences in steric and electronic effects in the mechanistic pathways leading to the different products. Stereoselectivity can vary in degree but it can never be total since the activation energy difference between the two pathways is finite: both products are at least possible and merely differ in amount. However, in favorable cases, the minor stereoisomer may not be detectable by the analytic methods used.

<span class="mw-page-title-main">Axial chirality</span> Type of symmetry in molecules

In chemistry, axial chirality is a special case of chirality in which a molecule contains two pairs of chemical groups in a non-planar arrangement about an axis of chirality so that the molecule is not superposable on its mirror image. The axis of chirality is usually determined by a chemical bond that is constrained against free rotation either by steric hindrance of the groups, as in substituted biaryl compounds such as BINAP, or by torsional stiffness of the bonds, as in the C=C double bonds in allenes such as glutinic acid. Axial chirality is most commonly observed in substituted biaryl compounds wherein the rotation about the aryl–aryl bond is restricted so it results in chiral atropisomers, as in various ortho-substituted biphenyls, and in binaphthyls such as BINAP.

<span class="mw-page-title-main">Atropisomer</span> Stereoisomerism due to hindered rotation

Atropisomers are stereoisomers arising because of hindered rotation about a single bond, where energy differences due to steric strain or other contributors create a barrier to rotation that is high enough to allow for isolation of individual conformers. They occur naturally and are important in pharmaceutical design. When the substituents are achiral, these conformers are enantiomers (atropoenantiomers), showing axial chirality; otherwise they are diastereomers (atropodiastereomers).

The molecular configuration of a molecule is the permanent geometry that results from the spatial arrangement of its bonds. The ability of the same set of atoms to form two or more molecules with different configurations is stereoisomerism. This is distinct from constitutional isomerism which arises from atoms being connected in a different order. Conformers which arise from single bond rotations, if not isolatable as atropisomers, do not count as distinct molecular configurations as the spatial connectivity of bonds is identical.

<span class="mw-page-title-main">Asymmetric induction</span> Preferential formation of one chiral isomer over another in a chemical reaction

Asymmetric induction describes the preferential formation in a chemical reaction of one enantiomer or diastereoisomer over the other as a result of the influence of a chiral feature present in the substrate, reagent, catalyst or environment. Asymmetric induction is a key element in asymmetric synthesis.

<span class="mw-page-title-main">Absolute configuration</span> Stereochemistry term

Absolute configuration refers to the spatial arrangement of atoms within a chiral molecular entity and its resultant stereochemical description. Absolute configuration is typically relevant in organic molecules where carbon is bonded to four different substituents. This type of construction creates two possible enantiomers. Absolute configuration uses a set of rules to describe the relative positions of each bond around the chiral center atom. The most common labeling method uses the descriptors R or S and is based on the Cahn–Ingold–Prelog priority rules. R and S refer to rectus and sinister, Latin for right and left, respectively.

<span class="mw-page-title-main">Isomer</span> Chemical compounds with the same molecular formula but different atomic arrangements

In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, same number of atoms of each element – but distinct arrangements of atoms in space. Diamond and graphite are a familiar example; they are isomers of carbon. Isomerism refers to the existence or possibility of isomers.

In chemical nomenclature, a descriptor is a notational prefix placed before the systematic substance name, which describes the configuration or the stereochemistry of the molecule. Some listed descriptors are only of historical interest and should not be used in publications anymore as they do not correspond with the modern recommendations of the IUPAC. Stereodescriptors are often used in combination with locants to clearly identify a chemical structure unambiguously.

Chemical compounds that come as mirror-image pairs are referred to by chemists as chiral or handed molecules. Each twin is called an enantiomer. Drugs that exhibit handedness are referred to as chiral drugs. Chiral drugs that are equimolar (1:1) mixture of enantiomers are called racemic drugs and these are obviously devoid of optical rotation. The most commonly encountered stereogenic unit, that confers chirality to drug molecules are stereogenic center. Stereogenic center can be due to the presence of tetrahedral tetra coordinate atoms (C,N,P) and pyramidal tricoordinate atoms (N,S). The word chiral describes the three-dimensional architecture of the molecule and does not reveal the stereochemical composition. Hence "chiral drug" does not say whether the drug is racemic, single enantiomer or some other combination of stereoisomers. To resolve this issue Joseph Gal introduced a new term called unichiral. Unichiral indicates that the stereochemical composition of a chiral drug is homogenous consisting of a single enantiomer.

References

  1. IUPAC "Gold Book" diastereoisomerism   doi : 10.1351/goldbook.D01679
  2. Garrett, R.H.; Grisham, C.M. (2005), Biochemistry 3rd ed., Belmont CA: Thomson, p. 205, ISBN   0-534-41020-0 .
  3. IUPAC "Gold Book" enantiomer   doi : 10.1351/goldbook.E02069
  4. McCance, Robert Alexander; Madders, Kate (1930). "The comparative rates of absorption of sugars from the human intestine". Biochemical Journal. 24 (3): 795–804. doi:10.1042/bj0240795. ISSN   0264-6021. PMC   1254520 . PMID   16744419.
  5. Chao, Hsi-Chun; McLuckey, Scott A. (2020-10-06). "Differentiation and Quantification of Diastereomeric Pairs of Glycosphingolipids using Gas-phase Ion Chemistry". Analytical Chemistry. 92 (19): 13387–13395. doi:10.1021/acs.analchem.0c02755. ISSN   0003-2700. PMC   7544660 . PMID   32883073.
  6. Lavinda, Olga; Witt, Collin H.; Woerpel, K. A. (2022-03-28). "Origin of High Diastereoselectivity in Reactions of Seven-Membered-Ring Enolates". Angewandte Chemie International Edition in English. 61 (14): e202114183. doi:10.1002/anie.202114183. ISSN   1521-3773. PMC   8940697 . PMID   35076978.
  7. Modern physical organic chemistry Eric V. Anslyn, Dennis A. Dougherty 2006
  8. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " erythro, threo ". doi : 10.1351/goldbook.E02212
  9. Merad, Jérémy; Candy, Mathieu; Pons, Jean-Marc; Bressy, Cyril (May 2017). "Catalytic Enantioselective Desymmetrization of Meso Compounds in Total Synthesis of Natural Products: Towards an Economy of Chiral Reagents". Synthesis. 49 (9): 1938–1954. doi:10.1055/s-0036-1589493. ISSN   0039-7881. S2CID   99010495.
  10. Brown, William (2018). Organic Chemistry (8th ed.). United States: Cengage Learning. pp. 138–142. ISBN   9781305580350.