Explorer 60

Last updated

SAGE
SAGE.jpg
Explorer 60 (SAGE) satellite
NamesExplorer 60
AEM-B
Applications Explorer Mission-B
Mission type Earth science
Operator NASA
COSPAR ID 1979-013A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 11270
Mission duration1 year (planned)
3 years (achieved)
Spacecraft properties
SpacecraftExplorer LX
Spacecraft typeStratospheric Aerosol and Gas Experiment
Bus SAGE
Manufacturer Langley Research Center
Launch mass148.7 kg (328 lb)
Power Solar panels and batteries
Start of mission
Launch date18 February 1979, 16:18 UTC [1]
Rocket Scout D-1 (S-202C)
Launch site Wallops, LA-3A
Contractor Vought
Entered service18 February 1979
End of mission
Last contact7 January 1982
Decay date11 April 1989
Orbital parameters
Reference system Geocentric orbit [2]
Regime Low Earth orbit
Perigee altitude 547.5 km (340.2 mi)
Apogee altitude 660.2 km (410.2 mi)
Inclination 54.90°
Period 96.80 minutes
Instruments
Stratospheric Aerosol and Gas Experiment (SAGE)
Explorer program
 

Explorer 60, also called as SAGE (Stratospheric Aerosol and Gas Experiment) and was the second of the Applications Explorer Missions (AEM), AEM-B (Applications Explorer Mission-B), was a NASA scientific satellite launched on 18 February 1979, from Wallops Flight Facility (WFF) by a Scout D-1 launch vehicle. [3]

Contents

Spacecraft

Explorer 60 / SAGE spacecraft AEM-2 SAGE Explorer 60 spacecraft.jpg
Explorer 60 / SAGE spacecraft

Explorer 60 had a launch mass of 148.7 kg (328 lb). The spacecraft was designed for a 1-year life in orbit. Explorer 60 was a small, versatile, and low-cost spacecraft made of two distinct parts: (1) the SAGE instrument module containing the detectors and the associated hardware, and (2) the base module containing the necessary data handling, power, communications, command, and attitude control subsystem to support the instrument mode. [3] The base module includes the telemetry data system and a communications subsystem that makes use of a conical log spiral S-band antenna and two Very high frequency (VHF) antennas. [4]

Mission

The objective of the SAGE mission was to obtain stratospheric aerosol and ozone data on a global scale for a better understanding of the Earth's environmental quality and radiation budget. [3]

Experiment

Stratospheric Aerosol and Gas Experiment (SAGE)

The objectives of the Stratospheric Aerosol and Gas Experiment (SAGE) were to determine the spatial distribution of stratospheric aerosols and ozone on a global scale. Specific objectives were (1) to develop a satellite-based remote-sensing technique for stratospheric aerosols and ozone measurements, (2) to map aerosol and ozone concentrations on a time scale shorter than major stratospheric changes, (3) to locate stratospheric aerosol and ozone sources and sinks, (4) to monitor circulation and transfer phenomena, (5) to observe hemisphere differences, and (6) to investigate the optical properties of aerosols and assess their effects on global climate. The SAGE instrument was a radiometer consisting of a gregorian telescope and a detector subassembly which measured the attenuation of solar radiation at four wavelengths (0.385, 0.45, 0.6, and 1.0 micrometre) during solar occultation. As the spacecraft emerged from the Earth's shadow, the sensor scanned the atmosphere of Earth from the horizon up, and measured the attenuation of solar radiation by different atmospheric layers. This procedure was repeated during spacecraft sunset. Two vertical scannings were obtained during each orbit, with each scan requiring approximately 1 minute of time to cover the atmosphere above the troposphere. The instrument had a field of view of approximately 0.15 milliradian which resulted in a vertical resolution of about 1 km (0.62 mi). Spatial coverage extended from about 79°N to 79°S latitude and thus complemented the coverage (64°N to 80°N and 64°S to 80°S) of the SAM II on Nimbus 7. The instrument performed satisfactorily. Because of power problems, the data collection was limited to sunset events after June 1979, and was eventually terminated on 18 November 1981. [5]

Results

Explorer 60 experienced power problems after 15 May 1979. However, the spacecraft operations continued until 19 November 1981. Explorer 60 detected and tracked also 5 volcanic eruption plumes that penetrated in the stratosphere. It determined the amount of new material for each volcano added to the stratosphere. The signal from the spacecraft was last received on 7 January 1982, when the battery failed. [3] On 11 April 1989, the spacecraft decayed in the atmosphere. [4]

See also

Related Research Articles

STS-66 1994 American crewed spaceflight

STS-66 was a Space Shuttle program mission that was flown by the Space Shuttle Atlantis. STS-66 launched on 3 November 1994 at 11:59:43.060 am EDT from Launch Pad 39-B at NASA's Kennedy Space Center. Atlantis landed at Edwards Air Force Base on 14 November 1994 at 10:33:45 am EST.

SCISAT-1 is a Canadian satellite designed to make observations of the Earth's atmosphere. Its main instruments are an optical Fourier transform infrared spectrometer, the ACE-FTS Instrument, and an ultraviolet spectrophotometer, MAESTRO. These devices record spectra of the Sun, as sunlight passes through the Earth's atmosphere, making analyses of the chemical elements of the atmosphere possible.

Upper Atmosphere Research Satellite NASA-operated orbital obserbatory

The Upper Atmosphere Research Satellite (UARS) was a NASA-operated orbital observatory whose mission was to study the Earth's atmosphere, particularly the protective ozone layer. The 5,900-kilogram (13,000 lb) satellite was deployed from Space Shuttle Discovery during the STS-48 mission on 15 September 1991. It entered Earth orbit at an operational altitude of 600 kilometers (370 mi), with an orbital inclination of 57 degrees.

Earth Radiation Budget Satellite

The Earth Radiation Budget Satellite (ERBS) was a NASA scientific research satellite within NASA's ERBE Research Program - a three-satellite mission, designed to investigate the Earth's radiation budget. It also carried an instrument that studied stratospheric aerosol and gases.

Atmospheric chemistry observational databases

Over the last two centuries many environmental chemical observations have been made from a variety of ground-based, airborne, and orbital platforms and deposited in databases. Many of these databases are publicly available. All of the instruments mentioned in this article give online public access to their data. These observations are critical in developing our understanding of the Earth's atmosphere and issues such as climate change, ozone depletion and air quality. Some of the external links provide repositories of many of these datasets in one place. For example, the Cambridge Atmospheric Chemical Database, is a large database in a uniform ASCII format. Each observation is augmented with the meteorological conditions such as the temperature, potential temperature, geopotential height, and equivalent PV latitude.

Solar Mesosphere Explorer NASA satellite of the Explorer program

The Solar Mesosphere Explorer was a NASA spacecraft to investigate the processes that create and destroy ozone in Earth's upper of the atmosphere of Earth. The mesosphere is a layer of the atmosphere extending from the top of the stratosphere to an altitude of about 80 km (50 mi). The spacecraft carried five instruments to measure ozone, water vapor, and incoming solar radiation.

NOAA-13, also known as NOAA-I before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). NOAA-I continued the operational, polar orbiting, meteorological satellite series operated by the National Environmental Satellite System (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-I continued the series (fifth) of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983. NOAA-I was in an afternoon equator-crossing orbit and was intended to replace the NOAA-11 (NOAA-H) as the prime afternoon (14:00) spacecraft.

SBUV/2

The Solar Backscatter Ultraviolet Radiometer, or SBUV/2, is a series of operational remote sensors on NOAA weather satellites in Sun-synchronous orbits which have been providing global measurements of stratospheric total ozone, as well as ozone profiles, since March 1985. The SBUV/2 instruments were developed from the SBUV experiment flown on the Nimbus-7 spacecraft which improved on the design of the original BUV instrument on Nimbus-4. These are nadir viewing radiometric instruments operating at mid to near UV wavelengths. SBUV/2 data sets overlap with data from SBUV and TOMS instruments on the Nimbus-7 spacecraft. These extensive data sets measure the density and vertical distribution of ozone in the Earth's atmosphere from six to 30 miles.

The Stratospheric Aerosol and Gas Experiment (SAGE) is a series of remote sensing satellite instruments used to study the chemical composition of Earth's atmosphere. Specifically, SAGE has been used to study the Earth's ozone layer and aerosols at the troposphere through the stratosphere. The SAGE instruments use solar occultation measurement technique to determine chemical concentrations in the atmosphere. Solar occultation measurement technique measures sunlight through the atmosphere and ratios that measurement with a sunlight measurement without atmospheric attenuation. This is achieved by observing sunrises and sunsets during a satellite orbit. Physically, the SAGE instruments measure ultraviolet/visible energy and this is converted via algorithms to determine chemical concentrations. SAGE data has been used to study the atmospheres aerosols, ozone, water vapor, and other trace gases.

NOAA-6, known as NOAA-A before launch, was an American operational weather satellite for use in the National Operational Environmental Satellite System (NOESS) and for the support of the Global Atmospheric Research Program (GARP) during 1978-1984. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

Heat Capacity Mapping Mission NASA satellite of the Explorer program

The Heat Capacity Mapping Mission (HCMM) spacecraft was the first of a series of Applications Explorer Mission (AEM) of the Explorer program.

ADEOS II Japanese Earth observation satellite

ADEOS II was an Earth observation satellite (EOS) launched by NASDA, with contributions from NASA and CNES, in December 2002. and it was the successor to the 1996 mission ADEOS I. The mission ended in October 2003 after the satellite's solar panels failed.

ADEOS I Japanese Earth observation satellite

ADEOS I was an Earth observation satellite launched by NASDA in 1996. The mission's Japanese name, Midori means "green". The mission ended in July 1997 after the satellite sustained structural damage to the solar panel. Its successor, ADEOS II, was launched in 2002. Like the first mission, it ended after less than a year, also following solar panel malfunctions.

SAGE III on ISS

SAGE III on ISS is the fourth generation of a series of NASA Earth-observing instruments, known as the Stratospheric Aerosol and Gas Experiment. The first SAGE III instrument was launched on a Russian Meteor-3M satellite. The recently revised SAGE III was mounted to the International Space Station where it uses the unique vantage point of ISS to make long-term measurements of ozone, aerosols, water vapor, and other gases in Earth's atmosphere.

Meteor-3M No.1

Meteor-3M No.1 was the first and only of the Meteor-3M series polar-orbiting weather satellites. It was launched on 10 December 2001 at 17:18:57 UTC from the Baikonur Cosmodrome in Kazakhstan. The satellite is in a sun-synchronous orbit with an ascending node time of about 9AM.

Explorer 55, also called as AE-E, was a NASA scientific satellite belonging to series Atmosphere Explorer, being launched on 20 November 1975 from Cape Canaveral Air Force Station (CCAFS) board a Thor-Delta 2910 launch vehicle.

NOAA-9

NOAA-9, known as NOAA-F before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Environmental Satellite Data and Information Service (NESDIS). It was the second of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA-10, known as NOAA-G before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Environmental Satellite Data and Information Service (NESDIS). It was the third of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA-11, known as NOAA-H before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Operational Environmental Satellite System (NOESS) and for support of the Global Atmospheric Research Program (GARP) during 1978–1984. It was the fourth of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA-14, also known as NOAA-J before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). NOAA-14 continued the third-generation operational, Polar Orbiting Environmental Satellite (POES) series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-14 continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983.

References

  1. "Launch Log". Jonathan's Space Report. 21 July 2021. Retrieved 22 November 2021.
  2. "Trajectory: Explorer 60 (SAGE) 1979-013A". NASA. 28 October 2021. Retrieved 22 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  3. 1 2 3 4 "Display: Explorer 60 (SAGE) 1979-013A". NASA. 28 October 2021. Retrieved 22 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  4. 1 2 "AEM-2 (Applications Explorer Mission-2)". ESA eoPortal Directory. Retrieved 22 November 2021.
  5. "Experiment: Stratospheric Aerosol and Gas Experiment (SAGE)". NASA. 28 October 2021. Retrieved 22 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .