Explorer 34

Last updated

Explorer 34
Explorer 34.jpg
Explorer 34 satellite
NamesIMP-F
IMP-4
Interplanetary Monitoring Platform-4
Mission type Space physics
Operator NASA
COSPAR ID 1967-051A
SATCAT no. 02817
Mission duration2 years (achieved)
Spacecraft properties
SpacecraftExplorer XXXIV
Spacecraft typeInterplanetary Monitoring Platform
Bus IMP
Manufacturer Goddard Space Flight Center
Launch mass163 kg (359 lb)
Dimensions71 × 20.3 cm (28.0 × 8.0 in)
Power4 deployable solar arrays and batteries
Start of mission
Launch date24 May 1967, 14:05:54 GMT [1]
Rocket Delta E1 (Thor 486 / Delta 049)
Launch site Vandenberg, SLC-2E [2]
Entered service24 May 1967
End of mission
Last contact3 May 1969
Decay date3 May 1969 [3]
Orbital parameters
Reference system Geocentric orbit [4]
Regime Highly elliptical orbit
Perigee altitude 2,031 km (1,262 mi)
Apogee altitude 209,242 km (130,017 mi)
Inclination 68.50°
Period 6218.30 minutes
Instruments
Explorer program
 

Explorer 34 (IMP-F, IMP-4), was a NASA satellite launched as part of Explorer program. Explorer 34 as launched on 24 May 1967 from Vandenberg Air Force Base, California, with Thor-Delta E1 launch vehicle. Explorer 34 was the fifth satellite launched as part of the Interplanetary Monitoring Platform program, but was known as "IMP-4" because the preceding launch was more specifically part of the "Anchored IMP" sub-program. [5] The spacecraft was put into space between the launches of Explorer 33 (IMP-D / AIMP-1) in 1966 and Explorer 35 (IMP-E / AIMP-2) in July 1967, but the next satellite to use Explorer 34's general design was Explorer 41 (IMP-G / IMP-5), which flew in 1969. [6]

Contents

Launch

Explorer 34 was placed into a high-inclination, highly elliptical orbit. The apogee point was located near the ecliptic plane and had an initial local time of about 19:00 hours. The spacecraft was spin-stabilized and had an initial spin period of 2.6-seconds. The spin vector was approximately perpendicular to the ecliptic plane. Like the earlier IMPs, this spacecraft was instrumented to study interplanetary magnetic fields, energetic particles, and plasma. [7]

Experiments

Cosmic-Ray Anisotropy

This experiment was designed to study solar particle anisotropy and its variation with time. A telescope, consisting of three aligned detectors -- (A) solid state, (B) plastic scintillator, and (C) Caesium iodide (CsI) scintillator—and a plastic scintillator anticoincidence shield (D), were used to measure protons from 0.8 to 7.0 MeV—counts in (A) but not in (B) -- and from 35 to 110 MeV—coincident counts in (B), measuring dE/dx, and (C), measuring total energy, but not in (D). Pulse-height analysis yielded six-point spectra within each of these two energy intervals. Protons from 7 to 55 MeV—counts in (A) and (B) -- were also recorded without spectral information. In addition, a proportional counter provided directional measurements of X-rays with energies above 2 keV and electrons above 70 keV. Counts in each particle-counting mode were obtained in each of eight octants in the ecliptic plane. X-ray counts were obtained in the solar octant. A complete set of count rates and spectral data was obtained every 81.9-seconds. [8]

Cosmic-Ray Energy versus Energy Loss

This experiment used a dE/dx vs E telescope with thin and thick Caesium iodide (CsI) scintillators (one each) and an anticoincidence plastic scintillation counter. The telescope axis was parallel to the spacecraft spin axis. Counts of particles penetrating the thin CsI scintillator and stopping in the thick CsI scintillator were accumulated for a 4.48-seconds interval twice every 2.73 minutes. The relative contribution to the count rate of various species (electrons between 2.7 and 21.5 MeV, nuclei with charge 1 and 2, atomic mass 1, 2, 3, and 4, and energy between 18.7 and 81.6 MeV/nucleon) and energy spectral information were determined by 1024-channel pulse-height analysis performed simultaneously on the output of both CsI scintillators 16 times every 2.73 minutes. Counts of electrons between 0.3 and 0.9 MeV stopping in the thin scintillator were also obtained once each 2.73 minutes. Except as noted above, the experiment performed well from launch until 3 May 1969 (spacecraft reentry date). [9]

Cosmic-Ray Proton (R versus DE/DX)

The experiment was designed to measure separately the contributions of solar nuclei and of galactic nuclei (Z<=14) using a solid-state cosmic ray telescope designed for energy-loss versus range or total energy measurements. The particle energy per nucleon intervals were approximately proportional to Z squared/A. For example, protons had intervals of 0.8 to 9.6 MeV, 9.6 to 18.8 MeV, 29.5 to 94.2 MeV, and 94.2 to 170 MeV and above. The detector viewing angle was perpendicular to the satellite spin axis. A second, smaller, solid-state telescope mounted parallel to the spacecraft spin axis was used to detect electrons in the ranges 80 to 130 keV and 175 to 390 keV. The electron detector was designed to provide information concerning the shape and intensity of the magnetospheric electron spectra. The detector accumulators for each energy interval were telemetered four times every 20.48-seconds. Each accumulation was 4.8-seconds long (spacecraft initial spin period was about 2.6-seconds). The output from three 256-channel nuclear-particle telescope pulse-height analyzers was obtained every 5.12-seconds and was telemetered along with the detector accumulators. The D3 element of the first telescope began to be intermittently noisy 16 November 1967, necessitating a more complex analysis to maintain data usefulness. After September 1968, no useful data above 30 MeV/nucleon were obtained. Otherwise, this telescope functioned until spacecraft reentry. The electron telescope provided useful data for only the first six days after launch. [10]

Electrostatic Analyzer

An electrostatic analyzer and an E-cross-B velocity selector normal to the spacecraft spin axis were used to separately determine proton and alpha particle spectra in the solar wind. For each species, measurements in the energy per charge range 310 to 5100 eV were made at 14 points logarithmically equispaced in energy. During individual spacecraft rotations, counts were obtained in each of sixteen 22.5° sectors for a given species and energy. The sum of these counts, the sum of the squares of these counts, and the sector number of maximum counting were telemetered to Earth. After successive 61.44-seconds spectral determinations for protons and alpha particles, 15 consecutive readings for protons at 1408 eV were obtained. A period of 3.07 minutes separated two spectra of the same species. The instrument operated normally until 30 January 1968. At that time, it was turned off as spacecraft apogee had moved into the magnetotail. Later, attempts to reactivate the sensor failed. [11]

Ion Chamber

The instrumentation for this experiment consisted of a 10 cm (3.9 in), Neher-type ionization chamber and two Lionel type 205 HT Geiger–Müller tubes (GM). The ion chamber responded omnidirectionally to electrons above 0.7 MeV and protons above 12 MeV. Both GM tubes were mounted parallel to the spacecraft spin axis. GM tube A detected electrons above 45 keV that were scattered from a gold foil. The acceptance cone for these electrons had a 70° full-angle and an axis of symmetry that was 20° off the spacecraft spin axis. GM tube B responded to electrons and protons above 22 and 300 keV, respectively, in an acceptance cone of 70° full-angle centered at the spin direction. Both GM tubes responded omnidirectionally to electrons and protons of energies above 2.5 and 50 MeV, respectively. Pulses from the ion chamber and counts from each GM tube were accumulated for 9.92-seconds and read out every 10.24-seconds. The time between the first two ion chamber pulses in an accumulation period was also telemetered. This experiment performed normally from launch through 8 September 1967, when GM tube A failed. On 5 November 1967, GM tube B failed and the experiment was terminated. [12]

Low-Energy Proton and Alpha Detector

This experiment used a dE/dx versus E telescope with one thin and two thick surface-barrier, solid-state detectors and an anticoincidence plastic scintillator counter. The two thick detectors acted together as one detector. The telescope axis was perpendicular to the spacecraft spin axis. Counts of particles penetrating the thin detector and stopping in a thick detector were accumulated for two 4.48-seconds intervals every 2.73 minutes. The relative contributions to the count rate of protons and alpha particles with energies between 4.2 and 19.1 MeV/nucleon and energy spectral information were determined by 1024-channel pulse-height analysis, which was performed simultaneously on the output of the solid-state detectors eight times every 2.73 minutes. Protons stopping in the thin detector (and particles penetrating it) were measured by passing the output signal through an eight-level energy threshold discriminator. The eight corresponding proton energies ran from 1.1 to about 4 MeV. Data from any one level were transmitted once every 2.73 minutes. The anticoincidence scintillator failed in March 1968. This resulted in somewhat higher background count rates, which rendered isotopic (but not charge) separation more difficult. Except as already noted, the experiment performed well from launch until 3 May 1969 (spacecraft reentry date). [13]

Low-Energy Proton and Electron Differential Energy Analyzer (LEPEDEA)

This experiment was designed to separately measure low-energy electron and proton intensities inside the magnetosphere and in the interplanetary region. The instrumentation system consisted of a cylindrical electrostatic analyzer (LEPEDEA or low-energy proton and electron differential energy analyzer) and a Bendix continuous channel multiplier (channeltron) array, and, in addition, an Anton 213 Geiger–Müller tube (GM) designed to survey the intensities of electrons with energies >40 keV in the outer magnetosphere. The electrostatic analyzer was capable of measuring the angular distributions and differential energy spectra of proton (25 eV to 47 keV) and electron (33 eV to 57 keV) intensities, separately, within 15 contiguous energy intervals. The analyzer accumulators were read out four times every 20.48-seconds. Each accumulation was about 480 ms long (spacecraft spin period was initially 2.6-seconds). A complete scan of the spectrum for four directions in a plane perpendicular to the spacecraft spin axis required 307.2-seconds for each energy interval. The detector responses for four approximately 60° segments of the angular distribution were slaved to the spacecraft telemetry system. The viewing direction of the segments was calculated from the spacecraft optical aspect information. The instruments performed normally from launch until the satellite decayed on 3 May 1969. [14]

Low-Energy Solid-State Telescope

A four-element solid-state telescope with an acceptance cone half-angle of 20° was mounted normal to the spacecraft spin axis. During each 2.73-minutes interval, 9.82-seconds accumulations were obtained in each of 16 distinct counting modes. These modes involved protons in five energy intervals covering 0.6 to 18 MeV, alpha particles in four intervals covering 1.7 to 80 MeV, and electrons, deuterons, tritons, and Helium-3 nuclei in the intervals 0.3 to 3, 5 to 20, 5.5 to 25, and 11 to 72 MeV, respectively. Onboard calibration checks were performed every 6 hours. The experiment performed normally from launch to the spacecraft reentry date, 3 May 1969. [15]

Solar Proton Monitoring Experiment

The solar proton monitoring experiment used four separate detectors, each of which used one or more solid-state sensors. Three detectors measured the omnidirectional fluxes of protons and alpha particles with energy per nucleon values above 10, 30, and 60 MeV. Alpha particle contributions to the total count rates were generally less than 10%. These detectors were also sensitive to electrons above approximately 0.7, 2, and 8 MeV, respectively. The 10-MeV channel was sampled for two 19.2-seconds intervals every 163.8-seconds and the 30- and 60-MeV channels for one 19.2-seconds interval every 163.8-seconds. Resultant hourly averaged fluxes have been published in Solar-Geophysical Data (NOAA, Boulder, Colorado) on a rapid basis. The fourth detector had a 60° full look angle normal to the spacecraft spin axis and measured fluxes of 1- to 10-MeV protons for two 19.2-seconds intervals every 163.8-seconds. Data were obtained from the first three detectors between launch and 3 May 1969. Data from the fourth detector were obtained between launch and 12 June 1968. [16]

Spherical Electrostatic Analyzer

This experiment used a spherical electrostatic analyzer with an electron multiplier to study the directional properties, absolute intensity, time variations, and energy spectrum of protons, electrons, and alpha particles in the energy range below 10 keV. At launch, it was questionable whether the door on the experiment had opened. Within a week, the experiment failed. No useful data were obtained. [17]

Triaxial Fluxgate Magnetometer

This experiment used a triaxial fluxgate magnetometer. Each sensor had dual ranges of minus to plus 32 nT and 128 nT and digitization errors of minus to plus 0.16 and 0.64 nT, respectively. The operating range could be changed by ground command. The sensor parallel to the spin axis was on a 1.8-m boom and was flipped every 3.9 d to check the zero level. The other two sensors were on a separate boom. Vector measurements were returned each 2.56 s. An onboard autocorrelation computer was included. Autocorrelation data based on 240 samplings were returned on alternate components each 20.45 s. The experiment worked well throughout the life of the spacecraft. However, failure of the spacecraft optical aspect system on 4 March 1969, rendered impossible the determination of the magnetic field direction over the last 2 months of data acquisition. [18]

See also

Related Research Articles

Explorer 35 NASA satellite of the Explorer program

Explorer 35,, was a spin-stabilized spacecraft built by NASA as part of the Explorer program. Designed for the study of the interplanetary plasma, magnetic field, energetic particles, and solar X-rays, from lunar orbit.

Explorer 6 NASA Earth science satellite launched in 1959

Explorer 6, or S-2, was an American satellite of NASA, launched on 7 August 1959. It was a small, spheroidal satellite designed to study trapped radiation of various energies, galactic cosmic rays, geomagnetism, radio propagation in the upper atmosphere, and the flux of micrometeorites. It also tested a scanning device designed for photographing the Earth's cloud cover. On 14 August 1959, Explorer 6 took the first photos of Earth from a satellite.

Explorer 11 U.S. space observatory

Explorer 11 was an American Earth satellite that carried the first space-borne gamma-ray telescope. This marked the beginning of space gamma-ray astronomy. Launched on 27 April 1961 by a Juno II, the satellite returned data until 17 November 1961, when power supply problems ended the science mission. During the spacecraft's seven-month lifespan it detected twenty-two events from gamma-rays and approximately 22,000 events from cosmic radiation.

Explorer 5 United States satellite launched in 1958

Explorer 5 was a United States satellite with a mass of 17.43 kg (38.4 lb). It was the last of the original series of Explorer satellites built, designed, and operated by the Jet Propulsion Laboratory.

Explorer 33 NASA satellite of the Explorer program

Explorer 33, also known as IMP-D and AIMP-1, was a spacecraft in the Explorer program launched by NASA on 1 July 1966 on a mission of scientific exploration. It was the fourth satellite launched as part of the Interplanetary Monitoring Platform series, and the first of two "Anchored IMP" spacecraft to study the environment around Earth at lunar distances, aiding the Apollo program. It marked a departure in design from its predecessors, IMP-A through IMP-C. Explorer 35 was the companion spacecraft to Explorer 33 in the Anchored IMP program, but Explorer 34 (IMP-F) was the next spacecraft to fly, launching about two months before AIMP-E, both in 1967.

Explorer 18 NASA satellite of the Explorer program

Explorer 18, also called IMP-A, IMP-1, Interplanetary Monitoring Platform-1 and S-74, was a NASA satellite launched as part of the Explorer program. Explorer 18 was launched on 27 November 1963 from Cape Canaveral Air Force Station (CCAFS), Florida, with a Thor-Delta C launch vehicle. Explorer 18 was the first satellite of the Interplanetary Monitoring Platform (IMP). Explorer 21 (IMP-B) launched in October 1964 and Explorer 28 (IMP-C) launched in May 1965 also used the same general spacecraft design.

Explorer 14 NASA satellite of the Explorer program

Explorer 14, also called EPE-B, was a spin-stabilized, solar-cell-powered spacecraft instrumented to measure cosmic-ray particles, trapped particles, solar wind protons, and magnetospheric and interplanetary magnetic fields. It was the second of the S3 series of spacecraft, which also included Explorer 12, 14, 15, and 26. It was launched on 2 October 1962, aboard a Thor-Delta launch vehicle.

ISEE-1 Space probe used to study magnetic fields near the Earth

The ISEE-1 was a Explorer-class mother spacecraft, International Sun-Earth Explorer-1, was part of the mother/daughter/heliocentric mission. ISEE-1 was a 340.2 kg (750 lb) space probe used to study magnetic fields near the Earth. ISEE-1 was a spin-stabilized spacecraft and based on the design of the prior IMP series of spacecraft. ISEE-1 and ISEE-2 were launched on 22 October 1977, and they re-entered on 26 September 1987.

ISEE-2 Space probe used to study magnetic fields near the Earth

The ISEE-2 was a Explorer-class daughter spacecraft, International Sun-Earth Explorer-2, was part of the mother/daughter/heliocentric mission. ISEE-2 was a 165.78 kg (365.5 lb) space probe used to study magnetic fields near the Earth. ISEE-2 was a spin-stabilized spacecraft and based on the design of the prior IMP series of spacecraft. ISEE-1 and ISEE-2 were launched on 22 October 1977, and they re-entered on 26 September 1987.

Explorer 12 NASA satellite of the Explorer program

Explorer 12, also called EPE-A and as S3), was a United States satellite built to measure the solar wind, cosmic rays, and the Earth's magnetic field. It was the first of the S3 series of spacecraft, which also included Explorer 12, 14, 15, and 26. It was launched on 16 August 1961, aboard a Thor-Delta launch vehicle. It ceased transmitting on 6 December 1961 due to power failure.

Explorer 26 NASA satellite of the Explorer program

Explorer 26 was a NASA satellite launched on 21 December 1964, as part of NASA's Explorer program. Its primary mission was to study the Earth's magnetic field.

Explorer 28 NASA satellite of the Explorer program

Explorer 28, also called IMP-C, IMP-3 and Interplanetary Monitoring Platform-3, was a NASA satellite launched on 29 May 1965 to study space physics, and was the third spacecraft launched in the Interplanetary Monitoring Platform program. It was powered by chemical batteries and solar panels. There were 7 experiments on board, all devoted to particle studies. Performance was normal until late April 1967, when intermittent problems began. It stayed in contact until 12 May 1967, when contact was lost. The orbit decayed until it re-entered the atmosphere on 4 July 1968. The spacecraft design was similar to its predecessors Explorer 18 (IMP-A), launched in November 1963, and Explorer 21 (IMP-B), launched in October 1964, though this satellite was a few kilograms lighter. The successor Explorer 33 (IMP-D) began the use of a new design.

Explorer 15 NASA satellite of the Explorer program

Explorer 15, also called EPE-C, was an American satellite launched as part of the Explorer program. Explorer 15 was launched on 27 October 1962, at Cape Canaveral Air Force Station, Florida, United States, with a Thor-Delta A.

Explorer 21 NASA satellite of the Explorer program

Explorer 21, also called IMP-B, IMP-2 and Interplanetary Monitoring Platform-2, was a NASA satellite launched as part of Explorer program. Explorer 21 was launched on 4 October 1964, at 03:45:00 GMT from Cape Canaveral (CCAFS), Florida, with a Thor-Delta C launch vehicle. Explorer 21 was the second satellite of the Interplanetary Monitoring Platform, and used the same general design as its predecessor, Explorer 18 (IMP-A), launched the previous year, in October 1964. The following Explorer 28 (IMP-C), launched in May 1965, also used a similar design.

Explorer 40 NASA satellite of the Explorer program

Explorer 40, was a NASA magnetically aligned satellite launched simultaneously with Explorer 39 (AD-C) using a Scout B launch vehicle. This was NASA's a dual-satellite launch.

Explorer 41 NASA satellite of the Explorer program

Explorer 41, also called as IMP-G and IMP-5, was a NASA satellite launched as part of Explorer program. Explorer 41 as launched on 21 June 1969 on Vandenberg AFB, California, with a Thor-Delta E1 launch vehicle. Explorer 41 was the seventh satellite launched as part of the overall Interplanetary Monitoring Platform series, though it received the post-launch designation "IMP-5" because two previous flights had used the "AIMP" designation instead. It was preceded by the second of those flights, Explorer 35, launched in July 1967. Its predecessor in the strict IMP series of launches was Explorer 34, launched in May 1967, which shared a similar design to Explorer 41. The next launch was of an IMP satellite was Explorer 43 in 1971.

Explorer 43 NASA satellite of the Explorer program

Explorer 43, also called as IMP-I and IMP-6, was a NASA satellite launched as part of Explorer program. Explorer 43 was launched on 13 March 1971 from Cape Canaveral Air Force Station (CCAFS), with a Thor-Delta M6 launch vehicle. Explorer 43 was the sixth satellite of the Interplanetary Monitoring Platform.

Explorer 45 NASA satellite of the Explorer program

Explorer 45 was a NASA satellite launched as part of Explorer program. Explorer 45 was the only one to be released from the program Small Scientific Satellite.

Explorer 47 NASA satellite of the Explorer program

Explorer 47, was a NASA satellite launched as part of Explorer program. Explorer 47 was launched on 23 September 1972 from Cape Canaveral, Florida, with a Thor-Delta 1604. Explorer 47 was the ninth overall launch of the Interplanetary Monitoring Platform series, but received the launch designation "IMP-7" because two previous "Anchored IMP" flights had used "AIMP" instead.

Explorer 50 NASA satellite of the Explorer program

Explorer 50, also known as IMP-J or IMP-8, was a NASA satellite launched to study the magnetosphere. It was the eighth and last in a series of the Interplanetary Monitoring Platform.

References

  1. "Launch Log". Jonathan's Space Report. Jonathan McDowell. 21 July 2021. Retrieved 11 November 2021.
  2. "IMP". Encyclopedia Astronautica. Retrieved 16 June 2018.
  3. "EXPLORER 34". N2YO.com. Retrieved 16 June 2018.
  4. "Trajectory: Explorer-34 (IMP-F) 1967-051A". NASA. 28 October 2021. Retrieved 11 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  5. Claude Lafleur. "Explorer 34 / IMP-4". Spacecraft Encyclopedia. Retrieved 11 November 2021.
  6. "Explorer-series reference images" . Retrieved 4 July 2021.
  7. "Display: Explorer-34 (IMP-F) 1967-051A". NASA. 28 October 2021. Retrieved 11 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  8. "Experiment: Cosmic-Ray Anisotropy". NASA. 28 October 2021. Retrieved 11 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  9. "Experiment: Cosmic-Ray Energy versus Energy Loss". NASA. 28 October 2021. Retrieved 11 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  10. "Experiment: Cosmic-Ray Proton (R versus DE/DX)". NASA. 28 October 2021. Retrieved 11 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  11. "Experiment: Electrostatic Analyzer". NASA. 28 October 2021. Retrieved 11 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  12. "Experiment: Ion Chamber". NASA. 28 October 2021. Retrieved 11 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  13. "Experiment: Low-Energy Proton and Alpha Detector". NASA. 28 October 2021. Retrieved 11 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  14. "Experiment: Low-Energy Proton and Electron Differential Energy Analyzer (LEPEDEA)". NASA. 28 October 2021. Retrieved 11 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  15. "Experiment: Low-Energy Solid-State Telescope". NASA. 28 October 2021. Retrieved 11 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  16. "Solar Proton Monitoring Experiment". NASA. 28 October 2021. Retrieved 11 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  17. "Spherical Electrostatic Analyzer". NASA. 28 October 2021. Retrieved 11 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  18. "Triaxial Fluxgate Magnetometer". NASA. 28 October 2021. Retrieved 11 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .