Heat Capacity Mapping Mission

Last updated

Heat Capacity Mapping Mission
HCMM.png
HCMM satellite
NamesExplorer 58
HCMM
AEM-A
Applications Explorer Mission-A
Mission type Cartography
Operator NASA
COSPAR ID 1978-041A
SATCAT no. 10818
Mission duration2.4 years (achieved)
Spacecraft properties
SpacecraftExplorer LVIII
Spacecraft typeHeat Capacity Mapping Mission
Bus Applications Explorer Mission
Manufacturer Goddard Space Flight Center
Launch mass117 kg (258 lb)
Power Solar panels and batteries
Start of mission
Launch date26 April 1978, 10:20 UTC
Rocket Scout D-1 (S-201C)
Launch site Vandenberg, SLC-5
Contractor Vought
Entered service26 April 1978
End of mission
Deactivated30 September 1980
Last contact30 September 1980
Decay date22 December 1981
Orbital parameters
Reference system Geocentric orbit [1]
Regime Sun-synchronous orbit
Perigee altitude 558 km (347 mi)
Apogee altitude 646 km (401 mi)
Inclination 97.60°
Period 96.70 minutes
Instruments
Heat Capacity Mapping Radiometer (HCMR)
Explorer program
 

The Heat Capacity Mapping Mission (HCMM) spacecraft was the first of a series of Applications Explorer Mission (AEM) of the Explorer program. [2]

Contents

Mission

The objective of the HCMM was to provide comprehensive, accurate, high-spatial-resolution thermal surveys of the surface of the Earth. [2]

Spacecraft

The HCMM spacecraft was made of two distinct modules: (1) an instrument module, containing the heat capacity mapping radiometer and its supporting gear, and (2) a base module, containing the data handling, power, communications, command, and attitude control subsystems required to support the instrument module. The spacecraft was spin stabilized at a rate of 14 rpm. The HCMM circular Sun-synchronous orbit allowed the spacecraft to sense surface temperatures near the maximum and minimum of the diurnal cycle. The orbit had a daylight ascending node with nominal equatorial crossing time of 14:00 hours. Since there was no inclination adjustment capacity, the spacecraft drifted from this crossing time by about 1 hour earlier per year. There was no on-board data storage capability, so only real-time data were transmitted when the satellite came within reception range of seven ground stations. The repeat cycle of the spacecraft was 16 days. Day/night coverage over a given area between the latitudes of 85°N and 85°S occurred at intervals ranging from 12 to 36 hours (once every 16 days). [2]

Experiment

Heat Capacity Mapping Radiometer (HCMR)

The objectives of the Heat Capacity Mapping Radiometer (HCMR) were (1) to produce thermal maps at the optimum times for making thermal-inertia studies for discrimination of rock types and mineral resources location, (2) to measure plant-canopy temperatures at frequent intervals to determine the transpiration of water and plant life, (3) to measure soil-moisture effects by observing the temperature cycle of soils, (4) to map thermal effluents, both natural and man-made, (5) to investigate the feasibility of geothermal source location by remote sensing, and (6) to provide frequent coverage of snow fields for water runoff prediction. The HCMR transmitted analog data in real time to selected receiving stations. The radiometer was similar to the surface composition mapping radiometer (SCMR) of Nimbus 5 (1972-097A). The HCMR had a small instantaneous geometric field of view of 0.83 mrad, high radiometric accuracy, and a wide 716 km (445 mi) swath coverage on the ground so that selected areas were covered within the 12-hour period corresponding to the maximum and minimum of temperature observed. The instrument operated in two channels, 10.5 to 12.5 micrometers (IR) and 0.55 to 1.1 micrometers (visible). The spatial resolution was approximately 600 m (2,000 ft) at nadir for the Infrared (IR) channel, and 500 m (1,600 ft) for the visible channel. The instrument utilized a radiation cooler to cool the two Mercury cadmium telluride (|Hg-Cd-Te) detectors to 115 K. The experiment included an analog multiplexer that accepted the analog outputs of the detectors and multiplexed them in a form suitable for transmission by the spacecraft S-band transmitter. The instrument performed satisfactorily until the spacecraft operations terminated on 30 September 1980. [3]

Launch

HCMM was launched from Vandenberg Air Force Base on 26 April 1978 by a Scout D-1 launch vehicle. Its mass was 117 kg (258 lb). [2]

End of mission and entry

During 21-23 February 1980, the HCMM orbital altitude was lowered from 620 km (390 mi) to 540 km (340 mi) to stop the drift of the orbit plane to unfavorable Sun angles which in turn reduced the power collection capability of the solar panels. The operations of the spacecraft were terminated on 30 September 1980. [2] HCMM re-entered in the Earth's atmosphere on 22 December 1981. [1]

See also

Related Research Articles

Venera 10 Space probe

Venera 10, or 4V-1 No. 661, was a Soviet uncrewed space mission to Venus. It consisted of an orbiter and a lander. It was launched on June 14, 1975 03:00:31 UTC and had a mass of 5033 kg (11096 lb).

NOAA-19

NOAA-19, known as NOAA-N' before launch, is the last of the American National Oceanic and Atmospheric Administration (NOAA) series of weather satellites. NOAA-19 was launched on 6 February 2009. NOAA-19 is in an afternoon equator-crossing orbit and is intended to replace NOAA-18 as the prime afternoon spacecraft.

NOAA-18

NOAA-18, also known as NOAA-N before launch, was an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-18 also continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983 but with additional new and improved instrumentation over the NOAA A-M series and a new launch vehicle. NOAA-18 was in an afternoon equator-crossing orbit and was intended to replace NOAA-17 as the prime afternoon spacecraft.

NOAA-15

NOAA-15, also known as NOAA-K before launch, is an operational, polar-orbiting of the NASA-provided Television Infrared Observation Satellite (TIROS) series of weather forecasting satellite operated by National Oceanic and Atmospheric Administration (NOAA). NOAA-15 was the latest in the Advanced TIROS-N (ATN) series. It provided support to environmental monitoring by complementing the NOAA/NESS Geostationary Operational Environmental Satellite program (GOES).

NOAA-13, also known as NOAA-I before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). NOAA-I continued the operational, polar orbiting, meteorological satellite series operated by the National Environmental Satellite System (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-I continued the series (fifth) of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983. NOAA-I was in an afternoon equator-crossing orbit and was intended to replace the NOAA-11 (NOAA-H) as the prime afternoon (14:00) spacecraft.

NOAA-7

NOAA-7, known as NOAA-C before launch, was an American operational weather satellite for use in the National Operational Environmental Satellite System (NOESS) and for the support of the Global Atmospheric Research Program (GARP) during 1978-1984. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment. An earlier launch, NOAA-B, was scheduled to become NOAA-7, however NOAA-B failed to reach its required orbit.

NOAA-6, known as NOAA-A before launch, was an American operational weather satellite for use in the National Operational Environmental Satellite System (NOESS) and for the support of the Global Atmospheric Research Program (GARP) during 1978-1984. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA B was an American operational weather satellite for use in the National Operational Environmental Satellite System (NOESS) and for the support of the Global Atmospheric Research Program (GARP) during 1978-1984. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

ADEOS I Japanese Earth observation satellite

ADEOS I was an Earth observation satellite launched by NASDA in 1996. The mission's Japanese name, Midori means "green". The mission ended in July 1997 after the satellite sustained structural damage to the solar panel. Its successor, ADEOS II, was launched in 2002. Like the first mission, it ended after less than a year, also following solar panel malfunctions.

Suomi NPP

The Suomi National Polar-orbiting Partnership, previously known as the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) and NPP-Bridge, is a weather satellite operated by the United States National Oceanic and Atmospheric Administration (NOAA). It was launched in 2011 and continues to operate in November 2021.

Explorer 12 NASA satellite of the Explorer program

Explorer 12, also called EPE-A and as S3), was a United States satellite built to measure the solar wind, cosmic rays, and the Earth's magnetic field. It was the first of the S3 series of spacecraft, which also included Explorer 12, 14, 15, and 26. It was launched on 16 August 1961, aboard a Thor-Delta launch vehicle. It ceased transmitting on 6 December 1961 due to power failure.

Explorer 45 NASA satellite of the Explorer program

Explorer 45 was a NASA satellite launched as part of Explorer program. Explorer 45 was the only one to be released from the program Small Scientific Satellite.

Explorer 60 NASA satellite of the Explorer program

Explorer 60, also called as SAGE and was the second of the Applications Explorer Missions (AEM), AEM-B, was a NASA scientific satellite launched on 18 February 1979, from Wallops Flight Facility (WFF) by a Scout D-1 launch vehicle.

NOAA-8, known as NOAA-E before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Environmental Satellite Data and Information Service (NESDIS). It was first of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA-9

NOAA-9, known as NOAA-F before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Environmental Satellite Data and Information Service (NESDIS). It was the second of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA-10, known as NOAA-G before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Environmental Satellite Data and Information Service (NESDIS). It was the third of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA-11, known as NOAA-H before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Operational Environmental Satellite System (NOESS) and for support of the Global Atmospheric Research Program (GARP) during 1978–1984. It was the fourth of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA-12, also kown as NOAA-D before launch, was an American weather satellite operated by National Oceanic and Atmospheric Administration (NOAA), an operational meteorological satellite for use in the National Environmental Satellite, Data, and Information Service (NESDIS). The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA-14, also known as NOAA-J before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). NOAA-14 continued the third-generation operational, Polar Orbiting Environmental Satellite (POES) series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-14 continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983.

<i>Galileo</i> (spacecraft) Robotic NASA spacecraft which studied the planet Jupiter and its moons

Galileo was an American robotic space probe that studied the planet Jupiter and its moons, as well as the asteroids Gaspra and Ida. Named after the Italian astronomer Galileo Galilei, it consisted of an orbiter and an entry probe. It was delivered into Earth orbit on October 18, 1989 by Space ShuttleAtlantis. Galileo arrived at Jupiter on December 7, 1995, after gravitational assist flybys of Venus and Earth, and became the first spacecraft to orbit Jupiter.

References

  1. 1 2 "Trajectory: HCMM (1978-041A)". NASA. 28 October 2021. Retrieved 22 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  2. 1 2 3 4 5 "Display: HCMM (1978-041A)". NASA. 28 October 2021. Retrieved 22 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  3. "Expleriment: Heat Capacity Mapping Radiometer (HCMR)". NASA. 28 October 2021. Retrieved 22 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .