UVEX

Last updated

Ultraviolet Explorer
New view UVEX3.png
UVEX spacecraft render
Mission type Ultraviolet astronomy
Operator NASA  / Goddard, Caltech
Website https://www.uvex.caltech.edu/
Mission duration2 years (planned) [1]
Start of mission
Launch date2030 (planned)
Orbital parameters
Reference system Geocentric orbit
Regime Highly elliptical orbit [2]
Perigee altitude 104,000 km (65,000 mi) [2]
Apogee altitude 396,000 km (246,000 mi)
Period 13.7 days
Main telescope
Type Three-mirror anastigmat [2]
Diameter75 cm (30 in)
Focal lengthf/2.7
Wavelengths
Resolution
Instruments
Ultraviolet telescope
 

The Ultraviolet Explorer (UVEX) is an upcoming wide-field ultraviolet space telescope from NASA scheduled to launch in 2030. [1] UVEX will build off of previous ultraviolet space telescopes, specifically GALEX, conducting surveys of the entire sky in both near- and far-ultraviolet light. UVEX will study the evolution of low-metallicity stars and how they affect the evolution of low-metallicity and low-mass galaxies. The probe can also be used for quick-turnaround observation of cosmic events, such as merging stars. UVEX's data will be able to complement other all-sky survey programs in different wavelengths of light, notably those by the Vera C. Rubin Observatory, the Roman Space Telescope, and the Euclid telescope. Compared to earlier ultraviolet space telescopes, UVEX will feature more capable instrumentation and a larger mirror, enabling it to obtain higher-resolution data and observe fainter objects. [2]

Contents

Spacecraft

Science payload

UVEX will contain one instrument, consisting of the UV-optimized optical telescope array (OTA) and the UV Instrument Module (UVIM). The OTA consists of a 75 cm (30 in)-diameter primary mirror in a three-mirror anastigmat configuration which will capture and redirect light to three different sensors.

Spacecraft bus

Mission

UVEX is classified as a Medium-Class Explorer (MIDEX) in NASA's Explorers Program and is planned to launch in 2030. After a period of orbit corrections and instrument commissioning, the probe will begin a two-year series of full-sky surveys. Because of its larger primary mirror, which can capture more light at once than the smaller mirrors of its predecessors, UVEX will observe dimmer and further objects. The probe will reach AB magnitudes greater than 25.8, comparable to the ground-based Vera C. Rubin Observatory. [1] UVEX will also perform weekly surveys of the Magellanic Clouds, something its predecessors struggled with because of their brightness. [2]

UVEX's science goals are divided into three "pillars:" [2]

Orbit

UVEX will operate in a highly elliptical lunar resonance orbit called P/2. This type of orbit is currently in use by the TESS spacecraft, which is also performing whole-sky surveys, although TESS is primarily searching for exoplanets. The P/2 orbit is in a 2:1 resonance with the Moon, meaning that the spacecraft completes two orbits of Earth for every one orbit of the Moon. Because of this resonance, which enables occasional gravitational interactions with the Moon, the orbit is extremely stable. In addition, the orbit avoids the Van Allen belts entirely, drastically reducing wear on spacecraft components. Because of its high altitude and eccentricity, UVEX will take 13.7 days to complete one orbit. [2] [3]

See also

Related Research Articles

<span class="mw-page-title-main">Hubble Space Telescope</span> NASA/ESA space telescope launched in 1990

The Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA's Great Observatories. The Space Telescope Science Institute (STScI) selects Hubble's targets and processes the resulting data, while the Goddard Space Flight Center (GSFC) controls the spacecraft.

<i>Clementine</i> (spacecraft) American space project

Clementine was a joint space project between the Ballistic Missile Defense Organization and NASA, launched on January 25, 1994. Its objective was to test sensors and spacecraft components in long-term exposure to space and to make scientific observations of both the Moon and the near-Earth asteroid 1620 Geographos.

<span class="mw-page-title-main">Ultraviolet astronomy</span> Observation of electromagnetic radiation at ultraviolet wavelengths

Ultraviolet astronomy is the observation of electromagnetic radiation at ultraviolet wavelengths between approximately 10 and 320 nanometres; shorter wavelengths—higher energy photons—are studied by X-ray astronomy and gamma-ray astronomy. Ultraviolet light is not visible to the human eye. Most of the light at these wavelengths is absorbed by the Earth's atmosphere, so observations at these wavelengths must be performed from the upper atmosphere or from space.

<span class="mw-page-title-main">Spitzer Space Telescope</span> Infrared space telescope (2003–2020)

The Spitzer Space Telescope, formerly the Space Infrared Telescope Facility (SIRTF), is an infrared space telescope launched in 2003, that was deactivated when operations ended on 30 January 2020. Spitzer was the third space telescope dedicated to infrared astronomy, following IRAS (1983) and ISO (1995–1998). It was the first spacecraft to use an Earth-trailing orbit, later used by the Kepler planet-finder.

<span class="mw-page-title-main">GALEX</span> NASA UV space telescope of the Explorer program, operated 2003-2013

Galaxy Evolution Explorer was a NASA orbiting space telescope designed to observe the universe in ultraviolet wavelengths to measure the history of star formation in the universe. In addition to paving the way for future ultraviolet missions, the space telescope allowed astronomers to uncover mysteries about the early universe and how it evolved, as well as better characterize phenomena like black holes and dark matter. The mission was extended three times over a period of 10 years before it was decommissioned in June 2013. GALEX was launched on 28 April 2003 and decommissioned in June 2013.

<span class="mw-page-title-main">Observational astronomy</span> Division of astronomy

Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical models. It is the practice and study of observing celestial objects with the use of telescopes and other astronomical instruments.

<span class="mw-page-title-main">Great Observatories program</span> Series of NASA satellites

NASA's series of Great Observatories satellites are four large, powerful space-based astronomical telescopes launched between 1990 and 2003. They were built with different technology to examine specific wavelength/energy regions of the electromagnetic spectrum: gamma rays, X-rays, visible and ultraviolet light, and infrared light.

<span class="mw-page-title-main">Far Ultraviolet Spectroscopic Explorer</span> NASA satellite of the Explorer program

Far Ultraviolet Spectroscopic Explorer represented the next generation, high-orbit, ultraviolet space observatory covering the wavelength range of 90.5–119.5 nanometre (nm) of the NASA operated by the Johns Hopkins University Applied Physics Laboratory. FUSE was launched on a Delta II launch vehicle on 24 June 1999, at 15:44:00 UTC, as a part of NASA's Origins Program. FUSE detected light in the far ultraviolet portion of the electromagnetic spectrum, which is mostly unobservable by other telescopes. Its primary mission was to characterize universal deuterium in an effort to learn about the stellar processing times of deuterium left over from the Big Bang. FUSE resides in a low Earth orbit, approximately 760 km (470 mi) in altitude, with an inclination of 24.98° and a 99.80 minutes orbital period. Its Explorer program designation is Explorer 77.

<span class="mw-page-title-main">TRACE</span> NASA satellite of the Explorer program

Transition Region and Coronal Explorer was a NASA heliophysics and solar observatory designed to investigate the connections between fine-scale magnetic fields and the associated plasma structures on the Sun by providing high resolution images and observation of the solar photosphere, the transition region, and the solar corona. A main focus of the TRACE instrument is the fine structure of coronal loops low in the solar atmosphere. TRACE is the third spacecraft in the Small Explorer program, launched on 2 April 1998, and obtained its last science image on 21 June 2010, at 23:56 UTC.

<span class="mw-page-title-main">International Ultraviolet Explorer</span> Astronomical observatory satellite

International Ultraviolet Explorer, was the first space observatory primarily designed to take ultraviolet (UV) electromagnetic spectrum. The satellite was a collaborative project between NASA, the United Kingdom's Science and Engineering Research Council and the European Space Agency (ESA), formerly European Space Research Organisation (ESRO). The mission was first proposed in early 1964, by a group of scientists in the United Kingdom, and was launched on 26 January 1978 aboard a NASA Thor-Delta 2914 launch vehicle. The mission lifetime was initially set for 3 years, but in the end it lasted 18 years, with the satellite being shut down in 1996. The switch-off occurred for financial reasons, while the telescope was still functioning at near original efficiency.

<span class="mw-page-title-main">Cosmic Origins Spectrograph</span> Instrument installed on the Hubble Space Telescope

The Cosmic Origins Spectrograph (COS) is a science instrument that was installed on the Hubble Space Telescope during Servicing Mission 4 (STS-125) in May 2009. It is designed for ultraviolet (90–320 nm) spectroscopy of faint point sources with a resolving power of ≈1,550–24,000. Science goals include the study of the origins of large scale structure in the universe, the formation and evolution of galaxies, and the origin of stellar and planetary systems and the cold interstellar medium. COS was developed and built by the Center for Astrophysics and Space Astronomy (CASA-ARL) at the University of Colorado at Boulder and the Ball Aerospace and Technologies Corporation in Boulder, Colorado.

<span class="mw-page-title-main">Extreme Ultraviolet Explorer</span> NASA satellite of the Explorer program

The Extreme Ultraviolet Explorer was a NASA space telescope for ultraviolet astronomy. EUVE was a part of NASA's Explorer spacecraft series. Launched on 7 June 1992. With instruments for ultraviolet (UV) radiation between wavelengths of 7 and 76 nm, the EUVE was the first satellite mission especially for the short-wave ultraviolet range. The satellite compiled an all-sky survey of 801 astronomical targets before being decommissioned on 31 January 2001.

<span class="mw-page-title-main">Spektr-UV</span> Proposed ultraviolet space telescope

Spektr-UV, also known as World Space Observatory-Ultraviolet (WSO-UV), is a proposed ultraviolet space telescope intended for work in the 115 nm to 315 nm wavelength range. It is an international project led by Russia (Roscosmos), with participation from Spain and Japan. The launch had initially been planned for 2007, but has since been continually delayed; as of December 2023, the launch is expected to take place no earlier than 2030 atop an Angara A5M rocket from Vostochny Cosmodrome.

This is a list of infrared topics.

<span class="mw-page-title-main">Orbiting Astronomical Observatory 2</span>

The Orbiting Astronomical Observatory 2 was the first successful space telescope, launched on December 7, 1968. An Atlas-Centaur rocket launched it into a nearly circular 750-kilometre (470 mi) altitude Earth orbit. Data was collected in ultraviolet on many sources including comets, planets, and galaxies. It had two major instrument sets facing in opposite directions; the Smithsonian Astrophysical Observatory (SAO) and the Wisconsin Experiment Package (WEP). One discovery was large halos of hydrogen gas around comets, and it also observed Nova Serpentis, which was a nova discovered in 1970.

<span class="mw-page-title-main">ULTRASAT</span>

ULTRASAT is a space telescope in a smallsat format with a large field of view, 210 square degrees, that will detect and monitor transient astronomical events in the near-ultraviolet (220–280 nm) spectral region. ULTRASAT will observe a large patch of sky, alternating every six months between the southern and northern hemisphere. The satellite will be launched into geosynchronous orbit in early 2026. All ULTRASAT data will be transmitted to the ground in real time. Upon detection of a transient event, ULTRASAT will provide alerts within 20 minutes to other ground-based and space telescopes to be directed to the source for further observation of the event in other wavelength bands.

UVS (<i>Juno</i>) Spectrometer instrument on the Juno orbiter

UVS, known as the Ultraviolet Spectrograph or Ultraviolet Imaging Spectrometer is the name of an instrument on the Juno orbiter for Jupiter. The instrument is an imaging spectrometer that observes the ultraviolet range of light wavelengths, which is shorter wavelengths than visible light but longer than X-rays. Specifically, it is focused on making remote observations of the aurora, detecting the emissions of gases such as hydrogen in the far-ultraviolet. UVS will observes light from as short a wavelength as 70 nm up to 200 nm, which is in the extreme and far ultraviolet range of light. The source of aurora emissions of Jupiter is one of the goals of the instrument. UVS is one of many instruments on Juno, but it is in particular designed to operate in conjunction with JADE, which observes high-energy particles. With both instruments operating together, both the UV emissions and high-energy particles at the same place and time can be synthesized. This supports the Goal of determining the source of the Jovian magnetic field. There has been a problem understanding the Jovian aurora, ever since Chandra determined X-rays were coming not from, as it was thought Io's orbit but from the polar regions. Every 45 minutes an X-ray hot-spot pulsates, corroborated by a similar previous detection in radio emissions by Galileo and Cassini spacecraft. One theory is that its related to the solar wind. The mystery is not that there are X-rays coming Jupiter, which has been known for decades, as detected by previous X-ray observatories, but rather why with the Chandra observation, that pulse was coming from the north polar region.

Lunar Ultraviolet Cosmic Imager (LUCI) is a small planned telescope that will be landed on the Moon to scan the sky in near UV wavelengths. It is a technology demonstrator developed by the Indian Institute of Astrophysics, and it was planned to be one of several small payloads to be deployed by the commercial Z-01 lander developed by TeamIndus in partnership with OrbitBeyond. The mission was planned to be launched in 2020 as part of NASA's Commercial Lunar Payload Services (CLPS). On 29 July 2019 OrbitBeyond announced that it would drop out of the CLPS contract with NASA, meaning that the 2020 launch was canceled and it is unknown whether the mission will ever take place.

<span class="mw-page-title-main">Alice (spacecraft instrument)</span>

Alice is an ultraviolet imaging spectrometer, with one used on the New Horizons spacecraft, and another on the Rosetta spacecraft. Alice is a small telescope with a spectrograph and a special detector with 32 pixels each with 1024 spectral channels detecting ultraviolet light. The instrument has a mass of 4.4 kg and draws 4.4 watts of power. Its primary role is to determine the relative concentrations of various elements and isotopes in Pluto's atmosphere.

References

  1. 1 2 3 4 5 "About UVEX". Caltech. Retrieved 25 March 2024.
  2. 1 2 3 4 5 6 7 8 9 10 Kulkarni, S. R.; et al. (19 January 2023). "Science with the Ultraviolet Explorer (UVEX)". Caltech. arXiv: 2111.15608 .{{cite web}}: Missing or empty |url= (help)
  3. "New Explorer Mission Chooses the 'Just-Right' Orbit". NASA. 31 July 2013.