Foundation species

Last updated
Californian forest of giant kelp, a foundation species Sanc0063 - Flickr - NOAA Photo Library.jpg
Californian forest of giant kelp, a foundation species

In ecology, the foundation species are species that have a strong role in structuring a community. A foundation species can occupy any trophic level in a food web (i.e., they can be primary producers, herbivores or predators). The term was coined by Paul K. Dayton in 1972, [2] who applied it to certain members of marine invertebrate and algae communities. It was clear from studies in several locations that there were a small handful of species whose activities had a disproportionate effect on the rest of the marine community and they were therefore key to the resilience of the community. Dayton’s view was that focusing on foundation species would allow for a simplified approach to more rapidly understand how a community as a whole would react to disturbances, such as pollution, instead of attempting the extremely difficult task of tracking the responses of all community members simultaneously. The term has since been applied to a range of organisms in ecosystems around the world, in both aquatic and terrestrial environments. Aaron Ellison et al. introduced the term to terrestrial ecology by applying the term foundation species to tree species that define and structure certain forest ecosystems through their influences on associated organisms and modulation of ecosystem processes. [3]

Contents

Examples and outcomes of foundation species loss

Tsuga Canadensis Tsuga canadensis morton.jpg
Tsuga Canadensis

A study conducted at the McKenzie Flats of the Sevilleta National Wildlife Refuge in New Mexico, a semiarid biome transition zone, observed the result of loss of a variety of different dominant and codominant foundation species of plants on the growth of other species. [4] This transition zone consists of two Chihuahuan Desert species, black grama ( Bouteloua eriopoda) and creosote bush ( Larrea tridentata), and a shortgrass steppe species, blue grama ( Bouteloua gracillis). Each species dominates an area with a specific soil environment. Black grama dominates sandy soils, while blue grama dominates in soils with high clay content, and creosote bush dominates fine-textured soil with surface gravel. This study noted that responses to the loss of foundation species is dependent on a variety of different factors from the ability of a species to recover to the climate conditions of the ecosystem to the patterns in dominance and explored the possible reasons for the outcomes of the study. The results indicated that in areas with just one dominant foundation species, its loss caused a shift in dominance to a mixed dominant community. For example, the creosote bush dominated shrubland saw a shift in dominance to 32% by other shrubs, 26% by perennial grasses, and 22% by perennial forbs following the removal of creosote bush. Another finding was that regardless of the community type and the species removed, the loss of foundation species resulted in an overall increase in black grama supporting the notion that the outcome is greatly affected by recovery ability of species removed or loss.

Another study observed the effects of loss of foundation eastern hemlocks ( Tsuga canadensis ) in a forest ecosystem. [5] Eastern hemlocks are a foundation species in eastern North American forests, but have been threatened by the accidental introduction of woolly adelgid. This study observed the effects that a loss in eastern hemlocks would have on the populations of arthropods, such as ants, beetles, and spiders, since these species are known indicators of environmental change. The results found that in areas of hemlock removal, there was an overall increase and influx of arthropod species. Researchers suggested that this was due to an increase in open habitats from the loss of the hemlocks. The results of this hemlock study corroborated with those from the previous McKenzie Flats study discussed in that the loss of foundation species led to a proliferation of species diversity in the affected area. These results seem to contradict a long-standing belief that foundation species play a vital role in communities and ecosystems by creating habitats for organisms, suggesting that in some circumstances they bottleneck species diversity. [6]

Foundation species play a vital role in structuring a community; however, this can be in a variety of different ways. The presence of a foundation species has the ability to either reduce or increase species diversity depending on its particular role in a specific ecosystem. The studies discussed highlighted examples in which foundation species limited species diversity in similar and differing taxa (the McKenzie Flats and eastern hemlock studies, respectively); however, there are many other examples in which removal of foundation species could decrease species diversity within the same or differing taxa.

See also

Related Research Articles

<span class="mw-page-title-main">Keystone species</span> Species with a large effect on its environment

A keystone species is a species that has a disproportionately large effect on its natural environment relative to its abundance, a concept introduced in 1969 by the zoologist Robert T. Paine. Keystone species play a critical role in maintaining the structure of an ecological community, affecting many other organisms in an ecosystem and helping to determine the types and numbers of various other species in the community. Without keystone species, the ecosystem would be dramatically different or cease to exist altogether. Some keystone species, such as the wolf, are also apex predators.

This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.

<span class="mw-page-title-main">Ecological succession</span> Process of change in the species structure of an ecological community over time

Ecological succession is the process of change in the species that make up an ecological community over time.

<span class="mw-page-title-main">Great Basin Desert</span> Desert in the western United States

The Great Basin Desert is part of the Great Basin between the Sierra Nevada and the Wasatch Range. The desert is a geographical region that largely overlaps the Great Basin shrub steppe defined by the World Wildlife Fund, and the Central Basin and Range ecoregion defined by the U.S. Environmental Protection Agency and United States Geological Survey. It is a temperate desert with hot, dry summers and snowy winters. The desert spans large portions of Nevada and Utah, and extends into eastern California. The desert is one of the four biologically defined deserts in North America, in addition to the Mojave, Sonoran, and Chihuahuan Deserts.

<span class="mw-page-title-main">Chihuahuan Desert</span> Largest desert in North America

The Chihuahuan Desert is a desert ecoregion designation covering parts of northern Mexico and the southwestern United States. It occupies much of far West Texas, the middle to lower Rio Grande Valley and the lower Pecos Valley in New Mexico, and a portion of southeastern Arizona, as well as the central and northern portions of the Mexican Plateau. It is bordered on the west by the Sonoran Desert, the Colorado Plateau, and the extensive Sierra Madre Occidental range, along with northwestern lowlands of the Sierra Madre Oriental range. Its largest, continual expanse is located in Mexico, covering a large portion of the state of Chihuahua, along with portions of Coahuila, north-eastern Durango, the extreme northern part of Zacatecas, and small western portions of Nuevo León. With an area of about 501,896 km2 (193,783 sq mi), it is the largest desert in North America. The desert is fairly young, existing for only 8000 years.

<i>Tsuga mertensiana</i> Species of tree found in western North America

Tsuga mertensiana, known as mountain hemlock, is a species of hemlock native to the west coast of North America, found between Southcentral Alaska and south-central California.

<span class="mw-page-title-main">Restoration ecology</span> Scientific study of renewing and restoring ecosystems

Ecological restoration is the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed. It is distinct from conservation and preservation in that it is an "attempt to co-design nature with nonhuman collaborators." Ecological restoration can reverse biodiversity loss, combat climate change, and support local economies. The United Nations named 2021-2030 the Decade on Ecosystem Restoration.

<span class="mw-page-title-main">Fire ecology</span> Study of fire in ecosystems

Fire ecology is a scientific discipline concerned with the effects of fire on natural ecosystems. Many ecosystems, particularly prairie, savanna, chaparral and coniferous forests, have evolved with fire as an essential contributor to habitat vitality and renewal. Many plant species in fire-affected environments use fire to germinate, establish, or to reproduce. Wildfire suppression not only endangers these species, but also the animals that depend upon them.

<span class="mw-page-title-main">Disturbance (ecology)</span> Temporary change in environmental conditions that causes a pronounced change in an ecosystem

In ecology, a disturbance is a temporary change in environmental conditions that causes a pronounced change in an ecosystem. Disturbances often act quickly and with great effect, to alter the physical structure or arrangement of biotic and abiotic elements. A disturbance can also occur over a long period of time and can impact the biodiversity within an ecosystem.

<i>Bouteloua gracilis</i> Species of grass

Bouteloua gracilis, the blue grama, is a long-lived, warm-season (C4) perennial grass, native to North America.

<span class="mw-page-title-main">Hemlock woolly adelgid</span> Species of true bug

The hemlock woolly adelgid, or HWA, is an insect of the order Hemiptera native to East Asia. It feeds by sucking sap from hemlock and spruce trees. In its native range, HWA is not a serious pest because populations are managed by natural predators and parasitoids and by host resistance. In eastern North America it is a destructive pest that threatens the eastern hemlock and the Carolina hemlock. HWA is also found in western North America, where it has likely been present for thousands of years. In western North America, it primarily attacks western hemlock Tsuga heterophylla and has only caused minor damage due to natural predators and host resistance. Accidentally introduced to North America from Japan, HWA was first found in the eastern United States near Richmond, Virginia, in 1951. The pest is now found from northern Georgia to coastal Maine and southwestern Nova Scotia. As of 2015, 90% of the geographic range of eastern hemlock in North America has been affected by HWA.

<span class="mw-page-title-main">New England–Acadian forests</span> Temperate broadleaf and mixed forest ecoregion of Canada and the United States

The New England-Acadian forests are a temperate broadleaf and mixed forest ecoregion in North America that includes a variety of habitats on the hills, mountains and plateaus of New England and New York State in the Northeastern United States, and Quebec and the Maritime Provinces of Eastern Canada.

<span class="mw-page-title-main">Sierra Nevada subalpine zone</span> Biotic zone in California, United States

The Sierra Nevada subalpine zone refers to a biotic zone below treeline in the Sierra Nevada mountain range of California, United States. This subalpine zone is positioned between the upper montane zone at its lower limit, and tree line at its upper limit.

<span class="mw-page-title-main">Dominance (ecology)</span> Measure of species ecological influence

Ecological dominance is the degree to which one or several species have a major influence controlling the other species in their ecological community or make up more of the biomass. Both the composition and abundance of species within an ecosystem can be affected by the dominant species present.

<span class="mw-page-title-main">Climax species</span> Plant species that can germinate and grow with limited resources

Climax species, also called late seral, late-successional, K-selected or equilibrium species, are plant species that can germinate and grow with limited resources; e.g., they need heat exposure or low water availability. They are the species within forest succession that are more adapted to stable and predictable environments, and will remain essentially unchanged in terms of species composition for as long as a site remains undisturbed.

Monodominance is an ecological condition in which more than 60% of the tree canopy comprises a single species of tree. Monodominant forests are quite common under conditions of extra-tropical climate types. Although monodominance is studied across different regions, most research focuses on the many prominent species in tropical forests. Connel and Lowman, originally called it single-dominance. Conventional explanations of biodiversity in tropical forests in the decades prior to Connel and Lowman's work either ignored monodominance entirely or predicted that it would not exist.

<span class="mw-page-title-main">Community genetics</span> Genetic interactions between species and their abiotic environment

Community genetics is a recently emerged field in biology that fuses elements of community ecology, evolutionary biology, and molecular and quantitative genetics. Antonovics first articulated the vision for such a field, and Whitham et al. formalized its definition as "The study of the genetic interactions that occur between species and their abiotic environment in complex communities." The field aims to bridge the gaps in the study of evolution and ecology, within the multivariate community context in which ecological and evolutionary features are embedded. The documentary movie A Thousand Invisible Cords provides an introduction to the field and its implications.

<span class="mw-page-title-main">Yellow-cedar decline</span>

Yellow-cedar decline is the accelerated decline and mortality of yellow cedar occurring in the Pacific Northwest Temperate Rainforest of Southeast Alaska and British Columbia in North America. This phenomenon has been observed on over 200,000 hectares of forest and is believed to be due to reduced winter snowpacks and increased soil freezing.

<span class="mw-page-title-main">Woody plant encroachment</span> Vegetation cover change

Woody plant encroachment is a natural phenomenon characterised by the increase in density of woody plants, bushes and shrubs, at the expense of the herbaceous layer, grasses and forbs. It predominantly occurs in grasslands, savannas and woodlands and can cause biome shifts from open grasslands and savannas to closed woodlands. The term bush encroachment refers to the expansion of native plants and not the spread of alien invasive species. It is thus defined by plant density, not species. Bush encroachment is often considered an ecological regime shift and can be a symptom of land degradation. The phenomenon is observed across different ecosystems and with different characteristics and intensities globally.

Whendee Silver is an American ecosystem ecologist and biogeochemist.

References

  1. Byrnes, J. E.; Reed, D. C.; Cardinale, B. J.; Cavanaugh, K. C.; Holbrook, S. J.; Schmitt, R. J. (2011). "Climate-driven increases in storm frequency simplify kelp forest food webs". Global Change Biology. 17 (8): 2513–2524. Bibcode:2011GCBio..17.2513B. doi:10.1111/j.1365-2486.2011.02409.x. hdl: 2027.42/86837 .
  2. Dayton, P. K. 1972. Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. pp. 81–96 in Proceedings of the Colloquium on Conservation Problems Allen Press, Lawrence, Kansas.
  3. Ellison, Aaron M.; Bank, Michael S.; Clinton, Barton D.; Colburn, Elizabeth A.; Elliott, Katherine; Ford, Chelcy R.; Foster, David R.; Kloeppel, Brian D.; Knoepp, Jennifer D. (2005). "Loss of foundation species: Consequences for the structure and dynamics of forested ecosystems". Frontiers in Ecology and the Environment. 3 (9): 479. doi: 10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2 . hdl: 11603/29165 .
  4. Peters, Debra P. C.; Yao, J (2012-03-01). "Long-term experimental loss of foundation species: consequences for dynamics at ecotones across heterogeneous landscapes". Ecosphere. 3 (3): art27. doi: 10.1890/ES11-00273.1 . ISSN   2150-8925.
  5. Sackett, Tara E.; Record, Sydne; Bewick, Sharon; Baiser, Benjamin; Sanders, Nathan J.; Ellison, Aaron M. (2011-07-01). "Response of macroarthropod assemblages to the loss of hemlock (Tsuga canadensis), a foundation species". Ecosphere. 2 (7): art74. doi: 10.1890/ES11-00155.1 . ISSN   2150-8925.
  6. Angelini, Christine; Altieri, Andrew H.; Silliman, Brian R.; Bertness, Mark D. (2011-10-01). "Interactions among Foundation Species and Their Consequences for Community Organization, Biodiversity, and Conservation". BioScience. 61 (10): 782–789. doi: 10.1525/bio.2011.61.10.8 . ISSN   0006-3568.