Ecosystem diversity

Last updated
The Earth has many diverse ecosystems and ecologicalsystem diversity. These are NASA composite images of the Earth: 2001 (left), 2002 (right), titled The Blue Marble. BlueMarble-2001-2002.jpg
The Earth has many diverse ecosystems and ecologicalsystem diversity. These are NASA composite images of the Earth: 2001 (left), 2002 (right), titled The Blue Marble .

Ecosystem diversity deals with the variations in ecosystems within a geographical location and its overall impact on human existence and the environment.

Contents

Ecosystem diversity addresses the combined characteristics of biotic properties (biodiversity) and abiotic properties (geodiversity). It is a variation in the ecosystems found in a region or the variation in ecosystems over the whole planet. Ecological diversity includes the variation in both terrestrial and aquatic ecosystems. Ecological diversity can also take into account the variation in the complexity of a biological community, including the number of different niches, the number of and other ecological processes. An example of ecological diversity on a global scale would be the variation in ecosystems, such as deserts, forests, grasslands, wetlands and oceans. Ecological diversity is the largest scale of biodiversity, and within each ecosystem, there is a great deal of both species and genetic diversity. [1] [2] [3] [4]

Impact

Diversity in the ecosystem is significant to human existence for a variety of reasons. Ecosystem diversity boosts the availability of oxygen via the process of photosynthesis amongst plant organisms domiciled in the habitat. Diversity in an aquatic environment helps in the purification of water by plant varieties for use by humans. Diversity increases plant varieties which serves as a good source for medicines and herbs for human use. A lack of diversity in the ecosystem produces an opposite result. [5]

Examples

Some examples of ecosystems that are rich in diversity are:

Ecosystem diversity as a result of evolutionary pressure

Ecological diversity around the world can be directly linked to the evolutionary and selective pressures that constrain the diversity outcome of the ecosystems within different niches. Tundras, Rainforests, coral reefs and deciduous forests all are formed as a result of evolutionary pressures. Even seemingly small evolutionary interactions can have large impacts on the diversity of the ecosystems throughout the world. One of the best studied cases of this is of the honey bee's interaction with angiosperms on every continent in the world except Antarctica. [6]

In 2010, Robert Brodschneider and Karl Crailsheim conducted a study on the health and nutrition in honey bee colonies. The study focused on overall colony health, adult nutrition, and larva nutrition as a function of the effect of pesticides, monocultures and genetically modified crops to see if the anthropogenically created problems can have an effect pollination levels. [7] The results indicate that human activity does have a role in the destruction of the fitness of the bee colony. The extinction or near extinction of these pollinators would result in many plants that feed humans on a wide scale needing alternative pollination methods. [8] Crop pollinating insects are worth annually $14.6 billion to the US economy [9] and the cost to hand pollinate over insect pollination is estimated to cost $5,715-$7,135 more per hectare. Not only will there be a cost increase but also an decrease in colony fitness, leading to a decrease in genetic diversity, which studies have shown has a direct link to the long-term survival of the honey bee colonies. [10] [11]

According to a study, there are over 50 plants that are dependent on bee pollination, many of these being key staples to feeding the world. [12] Another study conducted states that a lack of plant diversity will lead to a decline in the bee population fitness, and a low bee colony fitness has impacts on the fitness of plant ecosystem diversity. [13] By allowing for bee pollination and working to reduce anthropogenically harmful footprints, bee pollination can increase genetic diversity of flora growth and create a unique ecosystem that is highly diverse and can provide a habitat and niche for many other organisms to thrive. [14] Due to the evolutionary pressures of bees being located on six out of seven continents, there can be no denying the impact of pollinators on the ecosystem diversity. The pollen collected by the bees is harvested and used as an energy source for winter time; this act of collecting pollen from local plants also has a more important effect of facilitating the movement of genes between organisms. [15]

The new evolutionary pressures that are largely anthropogenically catalyzed can potentially cause wide spread collapse of ecosystems. In the north Atlantic sea, a study was conducted that followed the effects of the human interaction on surrounding ocean habitats. They found that there was no habitat or trophic level that in some way was affected negatively by human interaction, and that much of the diversity of life was being stunted as a result. [16]

See also

Related Research Articles

<span class="mw-page-title-main">Biodiversity</span> Variety and variability of life forms

Biodiversity or biological diversity is the variety and variability of life on Earth. Biodiversity is a measure of variation at the genetic, species, and ecosystem level. Biodiversity is not distributed evenly on Earth; it is usually greater in the tropics as a result of the warm climate and high primary productivity in the region near the equator. Tropical forest ecosystems cover less than 10% of earth's surface and contain about 90% of the world's species. Marine biodiversity is usually higher along coasts in the Western Pacific, where sea surface temperature is highest, and in the mid-latitudinal band in all oceans. There are latitudinal gradients in species diversity. Biodiversity generally tends to cluster in hotspots, and has been increasing through time, but will be likely to slow in the future as a primary result of deforestation. It encompasses the evolutionary, ecological, and cultural processes that sustain life.

<span class="mw-page-title-main">Pollinator</span> Animal that moves pollen from the male anther of a flower to the female stigma

A pollinator is an animal that moves pollen from the male anther of a flower to the female stigma of a flower. This helps to bring about fertilization of the ovules in the flower by the male gametes from the pollen grains.

<span class="mw-page-title-main">Conservation biology</span> Study of threats to biological diversity

Conservation biology is the study of the conservation of nature and of Earth's biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions. It is an interdisciplinary subject drawing on natural and social sciences, and the practice of natural resource management.

<span class="mw-page-title-main">Pollination</span> Biological process occurring in plants

Pollination is the transfer of pollen from an anther of a plant to the stigma of a plant, later enabling fertilisation and the production of seeds, most often by an animal or by wind. Pollinating agents can be animals such as insects, for example beetles; birds, butterflies, and bats; water; wind; and even plants themselves. Pollinating animals travel from plant to plant carrying pollen on their bodies in a vital interaction that allows the transfer of genetic material critical to the reproductive system of most flowering plants. When self-pollination occurs within a closed flower. Pollination often occurs within a species. When pollination occurs between species, it can produce hybrid offspring in nature and in plant breeding work.

This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.

<span class="mw-page-title-main">Habitat conservation</span> Management practice for protecting types of environments

Habitat conservation is a management practice that seeks to conserve, protect and restore habitats and prevent species extinction, fragmentation or reduction in range. It is a priority of many groups that cannot be easily characterized in terms of any one ideology.

<span class="mw-page-title-main">Gene flow</span> Transfer of genetic variation from one population to another

In population genetics, gene flow is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent allele frequencies and therefore can be considered a single effective population. It has been shown that it takes only "one migrant per generation" to prevent populations from diverging due to drift. Populations can diverge due to selection even when they are exchanging alleles, if the selection pressure is strong enough. Gene flow is an important mechanism for transferring genetic diversity among populations. Migrants change the distribution of genetic diversity among populations, by modifying allele frequencies. High rates of gene flow can reduce the genetic differentiation between the two groups, increasing homogeneity. For this reason, gene flow has been thought to constrain speciation and prevent range expansion by combining the gene pools of the groups, thus preventing the development of differences in genetic variation that would have led to differentiation and adaptation. In some cases dispersal resulting in gene flow may also result in the addition of novel genetic variants under positive selection to the gene pool of a species or population

<span class="mw-page-title-main">Pollinator decline</span> Reduction in abundance of insect and other animal pollinators

Pollinator decline is the reduction in abundance of insect and other animal pollinators in many ecosystems worldwide that began being recorded at the end of the 20th century. Multiple lines of evidence exist for the reduction of wild pollinator populations at the regional level, especially within Europe and North America. Similar findings from studies in South America, China and Japan make it reasonable to suggest that declines are occurring around the globe. The majority of studies focus on bees, particularly honeybee and bumblebee species, with a smaller number involving hoverflies and lepidopterans.

<span class="mw-page-title-main">Habitat fragmentation</span> Discontinuities in an organisms environment causing population fragmentation.

Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological processes that slowly alter the layout of the physical environment, and human activity such as land conversion, which can alter the environment much faster and causes the extinction of many species. More specifically, habitat fragmentation is a process by which large and contiguous habitats get divided into smaller, isolated patches of habitats.

<span class="mw-page-title-main">Evolutionary ecology</span> Interaction of biology and evolution

Evolutionary ecology lies at the intersection of ecology and evolutionary biology. It approaches the study of ecology in a way that explicitly considers the evolutionary histories of species and the interactions between them. Conversely, it can be seen as an approach to the study of evolution that incorporates an understanding of the interactions between the species under consideration. The main subfields of evolutionary ecology are life history evolution, sociobiology, the evolution of interspecific interactions and the evolution of biodiversity and of ecological communities.

<span class="mw-page-title-main">Ecosystem service</span> Benefits provided by healthy nature, forests and environmental systems

Ecosystem services are the many and varied benefits to humans provided by the natural environment and healthy ecosystems. Such ecosystems include, for example, agroecosystems, forest ecosystem, grassland ecosystems, and aquatic ecosystems. These ecosystems, functioning in healthy relationships, offer such things as natural pollination of crops, clean air, extreme weather mitigation, and human mental and physical well-being. Collectively, these benefits are becoming known as ecosystem services, and are often integral to the provision of food, the provisioning of clean drinking water, the decomposition of wastes, and the resilience and productivity of food ecosystems.

<i>Bombus terrestris</i> Species of bee

Bombus terrestris, the buff-tailed bumblebee or large earth bumblebee, is one of the most numerous bumblebee species in Europe. It is one of the main species used in greenhouse pollination, and so can be found in many countries and areas where it is not native, such as Tasmania. Moreover, it is a eusocial insect with an overlap of generations, a division of labour, and cooperative brood care. The queen is monandrous which means she mates with only one male. B. terrestris workers learn flower colours and forage efficiently.

<i>Apis florea</i> Species of bee

The dwarf honey bee, Apis florea, is one of two species of small, wild honey bees of southern and southeastern Asia. It has a much wider distribution than its sister species, Apis andreniformis. First identified in the late 18th century, Apis florea is unique for its morphology, foraging behavior and defensive mechanisms like making a piping noise. Apis florea have open nests and small colonies, which makes them more susceptible to predation than cavity nesters with large numbers of defensive workers. These honey bees are important pollinators and therefore commodified in countries like Cambodia.

A functional group is merely a set of species, or collection of organisms, that share alike characteristics within a community. Ideally, the lifeforms would perform equivalent tasks based on domain forces, rather than a common ancestor or evolutionary relationship. This could potentially lead to analogous structures that overrule the possibility of homology. More specifically, these beings produce resembling effects to external factors of an inhabiting system. Due to the fact that a majority of these creatures share an ecological niche, it is practical to assume they require similar structures in order to achieve the greatest amount of fitness. This refers to such as the ability to successfully reproduce to create offspring, and furthermore sustain life by avoiding alike predators and sharing meals.

<span class="mw-page-title-main">Functional ecology</span>

Functional ecology is a branch of ecology that focuses on the roles, or functions, that species play in the community or ecosystem in which they occur. In this approach, physiological, anatomical, and life history characteristics of the species are emphasized. The term "function" is used to emphasize certain physiological processes rather than discrete properties, describe an organism's role in a trophic system, or illustrate the effects of natural selective processes on an organism. This sub-discipline of ecology represents the crossroads between ecological patterns and the processes and mechanisms that underlie them. It focuses on traits represented in large number of species and can be measured in two ways – the first being screening, which involves measuring a trait across a number of species, and the second being empiricism, which provides quantitative relationships for the traits measured in screening. Functional ecology often emphasizes an integrative approach, using organism traits and activities to understand community dynamics and ecosystem processes, particularly in response to the rapid global changes occurring in earth's environment.

<span class="mw-page-title-main">Disturbance (ecology)</span> Temporary change in environmental conditions that causes a pronounced change in an ecosystem

In ecology, a disturbance is a temporary change in environmental conditions that causes a pronounced change in an ecosystem. Disturbances often act quickly and with great effect, to alter the physical structure or arrangement of biotic and abiotic elements. A disturbance can also occur over a long period of time and can impact the biodiversity within an ecosystem.

<span class="mw-page-title-main">Community (ecology)</span> Associated populations of species in a given area

In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

<span class="mw-page-title-main">East African lowland honey bee</span> Subspecies of honey bee native to Africa

The East African lowland honey bee is a subspecies of the western honey bee. It is native to central, southern and eastern Africa, though at the southern extreme it is replaced by the Cape honey bee. This subspecies has been determined to constitute one part of the ancestry of the Africanized bees spreading through North and South America.

<span class="mw-page-title-main">Western honey bee</span> European honey bee

The western honey bee or European honey bee is the most common of the 7–12 species of honey bees worldwide. The genus name Apis is Latin for "bee", and mellifera is the Latin for "honey-bearing" or "honey carrying", referring to the species' production of honey.

In ecology, functional equivalence is the ecological phenomenon that multiple species representing a variety of taxonomic groups can share similar, if not identical, roles in ecosystem functionality. This phenomenon can apply to both plant and animal taxa. The idea was originally presented in 2005 by Stephen Hubbell, a plant ecologist at the University of Georgia. This idea has led to a new paradigm for species-level classification – organizing species into groups based on functional similarity rather than morphological or evolutionary history. In the natural world, several examples of functional equivalence among different taxa have emerged analogously.

References

  1. Cunningham, Margaret. "What is Biodiversity? - Definition and Relation to Ecosystem Stability". study.com. DSST Environment & Humanity: Study Guide & Test Prep. Retrieved 29 April 2015.
  2. Brenda Wilmoth Lerner; K. Lee Lerner, eds. (2009). "Ecosystems". Environmental Science: In context. In Context Series. Vol. 1. Detroit: Gale. pp. 242–246. ISBN   978-1-4103-3754-2. OCLC   277051356.
  3. Purdy, Elizabeth (2012). "Ecosystems". In S. George Philander (ed.). Encyclopedia of Global Warming & Climate Change. Vol. 1 (2nd ed.). Thousand Oaks, CA: SAGE Reference. pp. 485–487. doi:10.4135/9781452218564. ISBN   978-1-4129-9261-9.
  4. Brenda Wilmoth Lerner; K. Lee Lerner, eds. (2009). "Ecosystem Diversity". Environmental Science: In Context. In Context Series. Vol. 1. Detroit: Gale. pp. 239–241. ISBN   978-1-4103-3754-2. OCLC   277051356.
  5. Naveh, Z. (1994-09-01). "From Biodiversity to Ecodiversity: A Landscape-Ecology Approach to Conservation and Restoration". Restoration Ecology. 2 (3): 180–189. doi: 10.1111/j.1526-100x.1994.tb00065.x . ISSN   1526-100X.
  6. Dray, Tammy. "On What Continents Are Bees Not Found?". Pets on mom. Retrieved 2018-10-31.
  7. Brodschneider, Robert (2010). "Nutrition and health in Honey bees" (PDF). Apidologie. 41 (3): 278–294. doi:10.1051/apido/2010012. S2CID   40046635.
  8. "Bee Pollination and Technology". Mission 2015: Biodiversity. MIT. Retrieved 2018-11-30.
  9. Goulson, Dave (2 October 2012). "Decline of bees forces China's apple farmers to pollinate by hand". China Dialogue. Retrieved 2018-10-31.
  10. "Genetic diversity key to survival of honey bee colonies". ScienceDaily. 17 June 2013. Retrieved 2018-10-31.
  11. Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S. (2013). "Genetic diversity affects colony survivorship in commercial honey bee colonies". Naturwissenschaften. 100 (8): 723–728. doi:10.1007/s00114-013-1065-y. ISSN   0028-1042. PMID   23728203. S2CID   253636199.
  12. "Pollination and Bee Plants" (PDF). 1998. Archived from the original (PDF) on 30 September 2007. Retrieved 31 October 2018. Excerpted from Beekeeper's Handbook, Sammataro/Avitabile
  13. Hays, Brooks (22 August 2018). "Plant biodiversity essential to bee health". UPI. United Press International. Retrieved 2018-10-31.
  14. Tucker, Jessica (2014-06-17). "Why Bees Are Important to Our Planet". One Green Planet. Retrieved 2018-10-31.
  15. Liu, Min; Compton, Stephen G.; Peng, Fo-En; Zhang, Jian; Chen, Xiao-Yong (2015-06-07). "Movements of genes between populations: are pollinators more effective at transferring their own or plant genetic markers?". Proceedings of the Royal Society B: Biological Sciences. 282 (1808): 20150290. doi:10.1098/rspb.2015.0290. ISSN   0962-8452. PMC   4455804 . PMID   25948688.
  16. Lotze, Heike K.; Milewski, Inka (October 2004). "Two Centuries of Multiple Human Impacts and Successive Changes in a North Atlantic Food Web". Ecological Applications. 14 (5): 1428–1447. doi:10.1890/03-5027. ISSN   1051-0761.