Heap (data structure)

Last updated
Example of a binary max-heap with node keys being integers between 1 and 100 Max-Heap-new.svg
Example of a binary max-heap with node keys being integers between 1 and 100

In computer science, a heap is a tree-based data structure that satisfies the heap property: In a max heap, for any given node C, if P is a parent node of C, then the key (the value) of P is greater than or equal to the key of C. In a min heap, the key of P is less than or equal to the key of C. [1] The node at the "top" of the heap (with no parents) is called the root node.

Contents

The heap is one maximally efficient implementation of an abstract data type called a priority queue, and in fact, priority queues are often referred to as "heaps", regardless of how they may be implemented. In a heap, the highest (or lowest) priority element is always stored at the root. However, a heap is not a sorted structure; it can be regarded as being partially ordered. A heap is a useful data structure when it is necessary to repeatedly remove the object with the highest (or lowest) priority, or when insertions need to be interspersed with removals of the root node.

A common implementation of a heap is the binary heap, in which the tree is a complete [2] binary tree (see figure). The heap data structure, specifically the binary heap, was introduced by J. W. J. Williams in 1964, as a data structure for the heapsort sorting algorithm. [3] Heaps are also crucial in several efficient graph algorithms such as Dijkstra's algorithm. When a heap is a complete binary tree, it has the smallest possible height—a heap with N nodes and a branches for each node always has logaN height.

Note that, as shown in the graphic, there is no implied ordering between siblings or cousins and no implied sequence for an in-order traversal (as there would be in, e.g., a binary search tree). The heap relation mentioned above applies only between nodes and their parents, grandparents, etc. The maximum number of children each node can have depends on the type of heap.

Heaps are typically constructed in-place in the same array where the elements are stored, with their structure being implicit in the access pattern of the operations. Heaps differ in this way from other data structures with similar or in some cases better theoretic bounds such as Radix trees in that they require no additional memory beyond that used for storing the keys.

Operations

The common operations involving heaps are:

Basic
Creation
Inspection
Internal

Implementation

Heaps are usually implemented with an array, as follows:

Example of a complete binary max-heap with node keys being integers from 1 to 100 and how it would be stored in an array. Heap-as-array.svg
Example of a complete binary max-heap with node keys being integers from 1 to 100 and how it would be stored in an array.

For a binary heap, in the array, the first index contains the root element. The next two indices of the array contain the root's children. The next four indices contain the four children of the root's two child nodes, and so on. Therefore, given a node at index i, its children are at indices and , and its parent is at index ⌊(i−1)/2⌋. This simple indexing scheme makes it efficient to move "up" or "down" the tree.

Balancing a heap is done by sift-up or sift-down operations (swapping elements which are out of order). As we can build a heap from an array without requiring extra memory (for the nodes, for example), heapsort can be used to sort an array in-place.

After an element is inserted into or deleted from a heap, the heap property may be violated, and the heap must be re-balanced by swapping elements within the array.

Although different type of heaps implement the operations differently, the most common way is as follows:

Construction of a binary (or d-ary) heap out of a given array of elements may be performed in linear time using the classic Floyd algorithm, with the worst-case number of comparisons equal to 2N − 2s2(N) − e2(N) (for a binary heap), where s2(N) is the sum of all digits of the binary representation of N and e2(N) is the exponent of 2 in the prime factorization of N. [7] This is faster than a sequence of consecutive insertions into an originally empty heap, which is log-linear. [lower-alpha 1]

Variants

Comparison of theoretic bounds for variants

Here are time complexities [8] of various heap data structures. Function names assume a max-heap. For the meaning of "O(f)" and "Θ(f)" see Big O notation.

Operationfind-maxdelete-maxinsertincrease-keymeld
Binary [8] Θ(1)Θ(log n)O(log n)O(log n)Θ(n)
Leftist Θ(1)Θ(log n)Θ(log n)O(log n)Θ(log n)
Binomial [8] [9] Θ(1)Θ(log n)Θ(1) [lower-alpha 2] Θ(log n)O(log n)
Skew binomial [10] Θ(1)Θ(log n)Θ(1)Θ(log n)O(log n) [lower-alpha 3]
Pairing [11] Θ(1)O(log n) [lower-alpha 2] Θ(1)o(log n) [lower-alpha 2] [lower-alpha 4] Θ(1)
Rank-pairing [14] Θ(1)O(log n) [lower-alpha 2] Θ(1)Θ(1) [lower-alpha 2] Θ(1)
Fibonacci [8] [15] Θ(1)O(log n) [lower-alpha 2] Θ(1)Θ(1) [lower-alpha 2] Θ(1)
Strict Fibonacci [16] Θ(1)O(log n)Θ(1)Θ(1)Θ(1)
Brodal [17] [lower-alpha 5] Θ(1)O(log n)Θ(1)Θ(1)Θ(1)
2–3 heap [19] O(log n)O(log n) [lower-alpha 2] O(log n) [lower-alpha 2] Θ(1)?
  1. Each insertion takes O(log(k)) in the existing size of the heap, thus . Since , a constant factor (half) of these insertions are within a constant factor of the maximum, so asymptotically we can assume ; formally the time is . This can also be readily seen from Stirling's approximation.
  2. 1 2 3 4 5 6 7 8 9 Amortized time.
  3. Brodal and Okasaki describe a technique to reduce the worst-case complexity of meld to Θ(1); this technique applies to any heap datastructure that has insert in Θ(1) and find-max, delete-max, meld in O(log n).
  4. Lower bound of [12] upper bound of [13]
  5. Brodal and Okasaki later describe a persistent variant with the same bounds except for decrease-key, which is not supported. Heaps with n elements can be constructed bottom-up in O(n). [18]

Applications

The heap data structure has many applications.

Programming language implementations

See also

Related Research Articles

<span class="mw-page-title-main">Binary search tree</span> Rooted binary tree data structure

In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree. The time complexity of operations on the binary search tree is linear with respect to the height of the tree.

<span class="mw-page-title-main">Heapsort</span> A sorting algorithm which uses the heap data structure

In computer science, heapsort is a comparison-based sorting algorithm which can be thought of as "an implementation of selection sort using the right data structure." Like selection sort, heapsort divides its input into a sorted and an unsorted region, and it iteratively shrinks the unsorted region by extracting the largest element from it and inserting it into the sorted region. Unlike selection sort, heapsort does not waste time with a linear-time scan of the unsorted region; rather, heap sort maintains the unsorted region in a heap data structure to efficiently find the largest element in each step.

In computer science, a priority queue is an abstract data-type similar to a regular queue or stack data structure. Each element in a priority queue has an associated priority. In a priority queue, elements with high priority are served before elements with low priority. In some implementations, if two elements have the same priority, they are served in the same order in which they were enqueued. In other implementations, the order of elements with the same priority is undefined.

<span class="mw-page-title-main">Binary heap</span> Variant of heap data structure

A binary heap is a heap data structure that takes the form of a binary tree. Binary heaps are a common way of implementing priority queues. The binary heap was introduced by J. W. J. Williams in 1964, as a data structure for heapsort.

<span class="mw-page-title-main">Smoothsort</span> Comparison-based sorting algorithm

In computer science, smoothsort is a comparison-based sorting algorithm. A variant of heapsort, it was invented and published by Edsger Dijkstra in 1981. Like heapsort, smoothsort is an in-place algorithm with an upper bound of O(n log n) operations (see big O notation), but it is not a stable sort. The advantage of smoothsort is that it comes closer to O(n) time if the input is already sorted to some degree, whereas heapsort averages O(n log n) regardless of the initial sorted state.

<span class="mw-page-title-main">Treap</span> Random search tree data structure

In computer science, the treap and the randomized binary search tree are two closely related forms of binary search tree data structures that maintain a dynamic set of ordered keys and allow binary searches among the keys. After any sequence of insertions and deletions of keys, the shape of the tree is a random variable with the same probability distribution as a random binary tree; in particular, with high probability its height is proportional to the logarithm of the number of keys, so that each search, insertion, or deletion operation takes logarithmic time to perform.

In computer science, a binomial heap is a data structure that acts as a priority queue but also allows pairs of heaps to be merged. It is important as an implementation of the mergeable heap abstract data type, which is a priority queue supporting merge operation. It is implemented as a heap similar to a binary heap but using a special tree structure that is different from the complete binary trees used by binary heaps. Binomial heaps were invented in 1978 by Jean Vuillemin.

In computer science, a Fibonacci heap is a data structure for priority queue operations, consisting of a collection of heap-ordered trees. Fibonacci heaps were originally explained to be an extension of binomial queues. It has a better amortized running time than many other priority queue data structures including the binary heap and binomial heap. Michael L. Fredman and Robert E. Tarjan developed Fibonacci heaps in 1984 and published them in a scientific journal in 1987. Fibonacci heaps are named after the Fibonacci numbers, which are used in their running time analysis.

In computer science, a leftist tree or leftist heap is a priority queue implemented with a variant of a binary heap. Every node x has an s-value which is the distance to the nearest leaf in subtree rooted at x. In contrast to a binary heap, a leftist tree attempts to be very unbalanced. In addition to the heap property, leftist trees are maintained so the right descendant of each node has the lower s-value.

A pairing heap is a type of heap data structure with relatively simple implementation and excellent practical amortized performance, introduced by Michael Fredman, Robert Sedgewick, Daniel Sleator, and Robert Tarjan in 1986. Pairing heaps are heap-ordered multiway tree structures, and can be considered simplified Fibonacci heaps. They are considered a "robust choice" for implementing such algorithms as Prim's MST algorithm, and support the following operations :

In computer science, adaptive heap sort is a comparison-based sorting algorithm of the adaptive sort family. It is a variant of heap sort that performs better when the data contains existing order. Published by Christos Levcopoulos and Ola Petersson in 1992, the algorithm utilizes a new measure of presortedness, Osc, as the number of oscillations. Instead of putting all the data into the heap as the traditional heap sort did, adaptive heap sort only take part of the data into the heap so that the run time will reduce significantly when the presortedness of the data is high.

The d-ary heap or d-heap is a priority queue data structure, a generalization of the binary heap in which the nodes have d children instead of 2. Thus, a binary heap is a 2-heap, and a ternary heap is a 3-heap. According to Tarjan and Jensen et al., d-ary heaps were invented by Donald B. Johnson in 1975.

<span class="mw-page-title-main">Cartesian tree</span> Binary tree derived from a sequence of numbers

In computer science, a Cartesian tree is a binary tree derived from a sequence of distinct numbers. To construct the Cartesian tree, set its root to be the minimum number in the sequence, and recursively construct its left and right subtrees from the subsequences before and after this number. It is uniquely defined as a min-heap whose symmetric (in-order) traversal returns the original sequence.

In computer science, a min-max heap is a complete binary tree data structure which combines the usefulness of both a min-heap and a max-heap, that is, it provides constant time retrieval and logarithmic time removal of both the minimum and maximum elements in it. This makes the min-max heap a very useful data structure to implement a double-ended priority queue. Like binary min-heaps and max-heaps, min-max heaps support logarithmic insertion and deletion and can be built in linear time. Min-max heaps are often represented implicitly in an array; hence it's referred to as an implicit data structure.

In computer science, a skew binomial heap is a variant of the binomial heap that supports constant-time insertion operations in the worst case, rather than the logarithmic worst case and constant amortized time of ordinary binomial heaps. Just as binomial heaps are based on the binary number system, skew binary heaps are based on the skew binary number system.

In computer science, the Brodal queue is a heap/priority queue structure with very low worst case time bounds: for insertion, find-minimum, meld and decrease-key and for delete-minimum and general deletion. They are the first heap variant to achieve these bounds without resorting to amortization of operational costs. Brodal queues are named after their inventor Gerth Stølting Brodal.

In computer science, k-way merge algorithms or multiway merges are a specific type of sequence merge algorithms that specialize in taking in k sorted lists and merging them into a single sorted list. These merge algorithms generally refer to merge algorithms that take in a number of sorted lists greater than two. Two-way merges are also referred to as binary merges.The k- way merge is also an external sorting algorithm.

In computer science, a weak heap is a data structure for priority queues, combining features of the binary heap and binomial heap. It can be stored in an array as an implicit binary tree like a binary heap, and has the efficiency guarantees of binomial heaps.

This is a comparison of the performance of notable data structures, as measured by the complexity of their logical operations. For a more comprehensive listing of data structures, see List of data structures.

In computer science, a strict Fibonacci heap is a priority queue data structure with worst case time bounds equal to the amortized bounds of the Fibonacci heap. Strict Fibonacci heaps belong to a class of asymptotically optimal data structures for priority queues. All operations on strict Fibonacci heaps run in worst case constant time except delete-min, which is necessarily logarithmic. This is optimal, because any priority queue can be used to sort a list of elements by performing insertions and delete-min operations. Strict Fibonacci heaps were invented in 2012 by Gerth Stølting Brodal, George Lagogiannis, and Robert E. Tarjan.

References

  1. Black (ed.), Paul E. (2004-12-14). Entry for heap in Dictionary of Algorithms and Data Structures . Online version. U.S. National Institute of Standards and Technology, 14 December 2004. Retrieved on 2017-10-08 from https://xlinux.nist.gov/dads/HTML/heap.html.
  2. CORMEN, THOMAS H. (2009). INTRODUCTION TO ALGORITHMS. United States of America: The MIT Press Cambridge, Massachusetts London, England. pp. 151–152. ISBN   978-0-262-03384-8.
  3. Williams, J. W. J. (1964), "Algorithm 232 - Heapsort", Communications of the ACM , 7 (6): 347–348, doi:10.1145/512274.512284
  4. The Python Standard Library, 8.4. heapq — Heap queue algorithm, heapq.heappush
  5. The Python Standard Library, 8.4. heapq — Heap queue algorithm, heapq.heappop
  6. The Python Standard Library, 8.4. heapq — Heap queue algorithm, heapq.heapreplace
  7. Suchenek, Marek A. (2012), "Elementary Yet Precise Worst-Case Analysis of Floyd's Heap-Construction Program", Fundamenta Informaticae, 120 (1), IOS Press: 75–92, doi:10.3233/FI-2012-751 .
  8. 1 2 3 4 Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (1990). Introduction to Algorithms (1st ed.). MIT Press and McGraw-Hill. ISBN   0-262-03141-8.
  9. "Binomial Heap | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2019-09-30.
  10. Brodal, Gerth Stølting; Okasaki, Chris (November 1996), "Optimal purely functional priority queues", Journal of Functional Programming, 6 (6): 839–857, doi: 10.1017/s095679680000201x
  11. Iacono, John (2000), "Improved upper bounds for pairing heaps", Proc. 7th Scandinavian Workshop on Algorithm Theory (PDF), Lecture Notes in Computer Science, vol. 1851, Springer-Verlag, pp. 63–77, arXiv: 1110.4428 , CiteSeerX   10.1.1.748.7812 , doi:10.1007/3-540-44985-X_5, ISBN   3-540-67690-2
  12. Fredman, Michael Lawrence (July 1999). "On the Efficiency of Pairing Heaps and Related Data Structures" (PDF). Journal of the Association for Computing Machinery . 46 (4): 473–501. doi:10.1145/320211.320214.
  13. Pettie, Seth (2005). Towards a Final Analysis of Pairing Heaps (PDF). FOCS '05 Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science. pp. 174–183. CiteSeerX   10.1.1.549.471 . doi:10.1109/SFCS.2005.75. ISBN   0-7695-2468-0.
  14. Haeupler, Bernhard; Sen, Siddhartha; Tarjan, Robert E. (November 2011). "Rank-pairing heaps" (PDF). SIAM J. Computing. 40 (6): 1463–1485. doi:10.1137/100785351.
  15. Fredman, Michael Lawrence; Tarjan, Robert E. (July 1987). "Fibonacci heaps and their uses in improved network optimization algorithms" (PDF). Journal of the Association for Computing Machinery . 34 (3): 596–615. CiteSeerX   10.1.1.309.8927 . doi:10.1145/28869.28874.
  16. Brodal, Gerth Stølting; Lagogiannis, George; Tarjan, Robert E. (2012). Strict Fibonacci heaps (PDF). Proceedings of the 44th symposium on Theory of Computing - STOC '12. pp. 1177–1184. CiteSeerX   10.1.1.233.1740 . doi:10.1145/2213977.2214082. ISBN   978-1-4503-1245-5.
  17. Brodal, Gerth S. (1996), "Worst-Case Efficient Priority Queues" (PDF), Proc. 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 52–58
  18. Goodrich, Michael T.; Tamassia, Roberto (2004). "7.3.6. Bottom-Up Heap Construction". Data Structures and Algorithms in Java (3rd ed.). pp. 338–341. ISBN   0-471-46983-1.
  19. Takaoka, Tadao (1999), Theory of 2–3 Heaps (PDF), p. 12
  20. Frederickson, Greg N. (1993), "An Optimal Algorithm for Selection in a Min-Heap", Information and Computation (PDF), vol. 104, Academic Press, pp. 197–214, doi: 10.1006/inco.1993.1030 , archived from the original (PDF) on 2012-12-03, retrieved 2010-10-31