Holonomic function

Last updated

In mathematics, and more specifically in analysis, a holonomic function is a smooth function of several variables that is a solution of a system of linear homogeneous differential equations with polynomial coefficients and satisfies a suitable dimension condition in terms of D-modules theory. More precisely, a holonomic function is an element of a holonomic module of smooth functions. Holonomic functions can also be described as differentiably finite functions, also known as D-finite functions. When a power series in the variables is the Taylor expansion of a holonomic function, the sequence of its coefficients, in one or several indices, is also called holonomic. Holonomic sequences are also called P-recursive sequences: they are defined recursively by multivariate recurrences satisfied by the whole sequence and by suitable specializations of it. The situation simplifies in the univariate case: any univariate sequence that satisfies a linear homogeneous recurrence relation with polynomial coefficients, or equivalently a linear homogeneous difference equation with polynomial coefficients, is holonomic. [1]

Contents

Holonomic functions and sequences in one variable

Definitions

Let be a field of characteristic 0 (for example, or ).

A function is called D-finite (or holonomic) if there exist polynomials such that

holds for all x. This can also be written as where

and is the differential operator that maps to . is called an annihilating operator of f (the annihilating operators of form an ideal in the ring , called the annihilator of ). The quantity r is called the order of the annihilating operator. By extension, the holonomic function f is said to be of order r when an annihilating operator of such order exists.

A sequence is called P-recursive (or holonomic) if there exist polynomials such that

holds for all n. This can also be written as where

and the shift operator that maps to . is called an annihilating operator of c (the annihilating operators of form an ideal in the ring , called the annihilator of ). The quantity r is called the order of the annihilating operator. By extension, the holonomic sequence c is said to be of order r when an annihilating operator of such order exists.

Holonomic functions are precisely the generating functions of holonomic sequences: if is holonomic, then the coefficients in the power series expansion

form a holonomic sequence. Conversely, for a given holonomic sequence , the function defined by the above sum is holonomic (this is true in the sense of formal power series, even if the sum has a zero radius of convergence).

Closure properties

Holonomic functions (or sequences) satisfy several closure properties. In particular, holonomic functions (or sequences) form a ring. They are not closed under division, however, and therefore do not form a field.

If and are holonomic functions, then the following functions are also holonomic:

A crucial property of holonomic functions is that the closure properties are effective: given annihilating operators for and , an annihilating operator for as defined using any of the above operations can be computed explicitly.

Examples of holonomic functions and sequences

Examples of holonomic functions include:

The class of holonomic functions is a strict superset of the class of hypergeometric functions. Examples of special functions that are holonomic but not hypergeometric include the Heun functions.

Examples of holonomic sequences include:

Hypergeometric functions, Bessel functions, and classical orthogonal polynomials, in addition to being holonomic functions of their variable, are also holonomic sequences with respect to their parameters. For example, the Bessel functions and satisfy the second-order linear recurrence .

Examples of nonholonomic functions and sequences

Examples of nonholonomic functions include:

Examples of nonholonomic sequences include:

Algorithms and software

Holonomic functions are a powerful tool in computer algebra. A holonomic function or sequence can be represented by a finite amount of data, namely an annihilating operator and a finite set of initial values, and the closure properties allow carrying out operations such as equality testing, summation and integration in an algorithmic fashion. In recent years, these techniques have allowed giving automated proofs of a large number of special function and combinatorial identities.

Moreover, there exist fast algorithms for evaluating holonomic functions to arbitrary precision at any point in the complex plane, and for numerically computing any entry in a holonomic sequence.

Software for working with holonomic functions includes:

See also

Dynamic Dictionary of Mathematical functions, an online software, based on holonomic functions for automatically studying many classical and special functions (evaluation at a point, Taylor series and asymptotic expansion to any user-given precision, differential equation, recurrence for the coefficients of the Taylor series, derivative, indefinite integral, plotting, ...)

Notes

  1. See Zeilberger 1990 and Kauers & Paule 2011.
  2. This follows from the fact that the function has infinitely many (complex) singularities, whereas functions that satisfy a linear differential equation with polynomial coefficients necessarily have only finitely many singular points.
  3. 1 2 3 4 5 See Flajolet, Gerhold & Salvy 2005.
  4. This follows from the fact that the function tan(x) + sec(x) is a nonholonomic function. See Flajolet, Gerhold & Salvy 2005.
  5. See Klazar 2003.

Related Research Articles

In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

<span class="mw-page-title-main">Sequence</span> Finite or infinite ordered list of elements

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members. The number of elements is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an arbitrary index set.

In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series.

In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation. If the values of the first numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation.

In mathematics, Hilbert's Nullstellensatz is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893.

In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as if it is considered as a polynomial with real coefficients. One says that the polynomial x2 − 2 is irreducible over the integers but not over the reals.

In algebra, a monic polynomial is a non-zero univariate polynomial in which the leading coefficient is equal to 1. That is to say, a monic polynomial is one that can be written as

In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces, the sequence of Betti numbers is 0 from some point onward, and they are all finite.

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form

In mathematics, an Appell sequence, named after Paul Émile Appell, is any polynomial sequence satisfying the identity

In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems.

In mathematics, a Witt vector is an infinite sequence of elements of a commutative ring. Ernst Witt showed how to put a ring structure on the set of Witt vectors, in such a way that the ring of Witt vectors over the finite field of order is isomorphic to , the ring of -adic integers. They have a highly non-intuitive structure upon first glance because their additive and multiplicative structure depends on an infinite set of recursive formulas which do not behave like addition and multiplication formulas for standard p-adic integers.

In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra.

In mathematics, the Schuette–Nesbitt formula is a generalization of the inclusion–exclusion principle. It is named after Donald R. Schuette and Cecil J. Nesbitt.

A system of polynomial equations is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k.

<span class="mw-page-title-main">Constant-recursive sequence</span> Infinite sequence of numbers satisfying a linear equation

In mathematics, an infinite sequence of numbers is called constant-recursive if it satisfies a linear recurrence relation. For example, the Fibonacci sequence

In mathematics a P-recursive equation is a linear equation of sequences where the coefficient sequences can be represented as polynomials. P-recursive equations are linear recurrence equations with polynomial coefficients. These equations play an important role in different areas of mathematics, specifically in combinatorics. The sequences which are solutions of these equations are called holonomic, P-recursive or D-finite.

A Boltzmann sampler is an algorithm intended for random sampling of combinatorial structures. If the object size is viewed as its energy, and the argument of the corresponding generating function is interpreted in terms of the temperature of the physical system, then a Boltzmann sampler returns an object from a classical Boltzmann distribution.

References