List of named differential equations

Last updated

Differential equations play a prominent role in many scientific areas: mathematics, physics, engineering, chemistry, biology, medicine, economics, etc. This list presents differential equations that have received specific names, area by area.

Contents

Mathematics

Algebraic geometry

Complex analysis

Differential geometry

Dynamical systems and Chaos theory

Mathematical physics

Ordinary Differential Equations (ODEs)

Riemannian geometry

Physics

Astrophysics

Classical mechanics

Electromagnetism

Fluid dynamics and hydrology

General relativity

Materials science

Nuclear physics

Plasma physics

Quantum mechanics and quantum field theory

Thermodynamics and statistical mechanics

Waves (mechanical or electromagnetic)

Engineering

Electrical and Electronic Engineering

Game theory

Mechanical engineering

Nuclear engineering

Optimal control

Orbital mechanics

Signal processing

Transportation engineering

Chemistry

Biology and medicine

Population dynamics

Economics and finance

Linguistics

Military strategy

Related Research Articles

In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.

<span class="mw-page-title-main">Computational fluid dynamics</span> Analysis and solving of problems that involve fluid flows

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is typically performed using experimental apparatus such as wind tunnels. In addition, previously performed analytical or empirical analysis of a particular problem can be used for comparison. A final validation is often performed using full-scale testing, such as flight tests.

Burgers' equation or Bateman–Burgers equation is a fundamental partial differential equation and convection–diffusion equation occurring in various areas of applied mathematics, such as fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow. The equation was first introduced by Harry Bateman in 1915 and later studied by Johannes Martinus Burgers in 1948.

In theoretical physics and applied mathematics, a field equation is a partial differential equation which determines the dynamics of a physical field, specifically the time evolution and spatial distribution of the field. The solutions to the equation are mathematical functions which correspond directly to the field, as functions of time and space. Since the field equation is a partial differential equation, there are families of solutions which represent a variety of physical possibilities. Usually, there is not just a single equation, but a set of coupled equations which must be solved simultaneously. Field equations are not ordinary differential equations since a field depends on space and time, which requires at least two variables.

<span class="mw-page-title-main">Nonlinear Schrödinger equation</span> Nonlinear form of the Schrödinger equation

In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic, cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.

<span class="mw-page-title-main">Differential equation</span> Type of functional equation (mathematics)

In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.

In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals that its motion is confined to a submanifold of much smaller dimensionality than that of its phase space.

<span class="mw-page-title-main">Turbulence modeling</span> Use of mathematical models to simulate turbulent flow

In fluid dynamics, turbulence modeling is the construction and use of a mathematical model to predict the effects of turbulence. Turbulent flows are commonplace in most real-life scenarios, including the flow of blood through the cardiovascular system, the airflow over an aircraft wing, the re-entry of space vehicles, besides others. In spite of decades of research, there is no analytical theory to predict the evolution of these turbulent flows. The equations governing turbulent flows can only be solved directly for simple cases of flow. For most real-life turbulent flows, CFD simulations use turbulent models to predict the evolution of turbulence. These turbulence models are simplified constitutive equations that predict the statistical evolution of turbulent flows.

In dynamical systems theory, a period-doubling bifurcation occurs when a slight change in a system's parameters causes a new periodic trajectory to emerge from an existing periodic trajectory—the new one having double the period of the original. With the doubled period, it takes twice as long for the numerical values visited by the system to repeat themselves.

Yoshiki Kuramoto is a Japanese physicist in the Nonlinear Dynamics group at Kyoto University who formulated the Kuramoto model and is also known for the Kuramoto–Sivashinsky equation. He is also the discoverer of so-called chimera states in networks of coupled oscillators.

In mathematics, a dispersive partial differential equation or dispersive PDE is a partial differential equation that is dispersive. In this context, dispersion means that waves of different wavelength propagate at different phase velocities.

<span class="mw-page-title-main">Reaction–diffusion system</span> Type of mathematical model

Reaction–diffusion systems are mathematical models which correspond to several physical phenomena. The most common is the change in space and time of the concentration of one or more chemical substances: local chemical reactions in which the substances are transformed into each other, and diffusion which causes the substances to spread out over a surface in space.

Roger Meyer Temam is a French applied mathematician working in numerical analysis, nonlinear partial differential equations and fluid mechanics. He graduated from the University of Paris – the Sorbonne in 1967, completing a doctorate under the direction of Jacques-Louis Lions. He has published over 400 articles, as well as 12 books.

Irena Lasiecka is a Polish-American mathematician, a Distinguished University Professor of mathematics and chair of the mathematics department at the University of Memphis. She is also co-editor-in-chief of two academic journals, Applied Mathematics & Optimization and Evolution Equations & Control Theory.

<span class="mw-page-title-main">Kuramoto–Sivashinsky equation</span> Partial differential equation

In mathematics, the Kuramoto–Sivashinsky equation is a fourth-order nonlinear partial differential equation. It is named after Yoshiki Kuramoto and Gregory Sivashinsky, who derived the equation in the late 1970s to model the diffusive–thermal instabilities in a laminar flame front. The equation was independelty derived by G. M. Homsy and A. A. Nepomnyashchii in 1974, in connection with the stability of liquid film on an inclined plane and by R. E. LaQuey et. al. in 1975 in connection with trapped-ion instability. The Kuramoto–Sivashinsky equation is known for its chaotic behavior.

Walter Alexander Strauss is an American applied mathematician, specializing in partial differential equations and nonlinear waves. His research interests include partial differential equations, mathematical physics, stability theory, solitary waves, kinetic theory of plasmas, scattering theory, water waves, and dispersive waves.

<span class="mw-page-title-main">Physics-informed neural networks</span> Technique to solve partial differential equations

Physics-informed neural networks (PINNs) are a type of universal function approximators that can embed the knowledge of any physical laws that govern a given data-set in the learning process, and can be described by partial differential equations (PDEs). They overcome the low data availability of some biological and engineering systems that makes most state-of-the-art machine learning techniques lack robustness, rendering them ineffective in these scenarios. The prior knowledge of general physical laws acts in the training of neural networks (NNs) as a regularization agent that limits the space of admissible solutions, increasing the correctness of the function approximation. This way, embedding this prior information into a neural network results in enhancing the information content of the available data, facilitating the learning algorithm to capture the right solution and to generalize well even with a low amount of training examples.

Boualem Khouider is an Algerian-Canadian applied mathematician, climate scientist, academic, and author. He is a professor, and former Chair of Mathematics and Statistics at the University of Victoria.

References

  1. Zebiak, Stephen E.; Cane, Mark A. (1987). "A Model El Niño–Southern Oscillation". Monthly Weather Review. 115 (10): 2262–2278. doi: 10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2 . ISSN   1520-0493.
  2. Griffiths, David J. (2004), Introduction to Quantum Mechanics (2nd ed.), Prentice Hall, pp. 1–2, ISBN   0-13-111892-7
  3. Ragheb, M. (2017). "Neutron Diffusion Theory" (PDF).
  4. Choi, Youngsoo (2011). "PDE-constrained Optimization and Beyond" (PDF).
  5. Heinkenschloss, Matthias (2008). "PDE Constrained Optimization" (PDF). SIAM Conference on Optimization.
  6. Rudin, Leonid I.; Osher, Stanley; Fatemi, Emad (1992). "Nonlinear total variation based noise removal algorithms". Physica D. 60 (1–4): 259–268. Bibcode:1992PhyD...60..259R. CiteSeerX   10.1.1.117.1675 . doi:10.1016/0167-2789(92)90242-F.
  7. Murray, James D. (2002). Mathematical Biology I: An Introduction (PDF). Interdisciplinary Applied Mathematics. Vol. 17 (3rd ed.). New York: Springer. pp. 395–417. doi:10.1007/b98868. ISBN   978-0-387-95223-9.
  8. Fernández-Villaverde, Jesús (2010). "The econometrics of DSGE models" (PDF). SERIEs. 1 (1–2): 3–49. doi: 10.1007/s13209-009-0014-7 . S2CID   8631466.
  9. Piazzesi, Monika (2010). "Affine Term Structure Models" (PDF).
  10. Cardaliaguet, Pierre (2013). "Notes on Mean Field Games (from P.-L. Lions' lectures at Collège de France)" (PDF).