Organ of Corti

Last updated
Organ of Corti
Cochlea-crosssection.svg
A cross section of the cochlea illustrating the organ of Corti
Details
Part of Cochlea of the inner ear
Identifiers
Latin organum spirale
MeSH D009925
NeuroLex ID birnlex_2526
TA98 A15.3.03.121
TA2 7035
FMA 75715
Anatomical terminology

The organ of Corti, or spiral organ, is the receptor organ for hearing and is located in the mammalian cochlea. This highly varied strip of epithelial cells allows for transduction of auditory signals into nerve impulses' action potential. [1] Transduction occurs through vibrations of structures in the inner ear causing displacement of cochlear fluid and movement of hair cells at the organ of Corti to produce electrochemical signals. [2]

Contents

Italian anatomist Alfonso Giacomo Gaspare Corti (1822–1876) discovered the organ of Corti in 1851. [3] The structure evolved from the basilar papilla and is crucial for mechanotransduction in mammals.

Structure

Cross-section through the spiral organ of Corti at greater magnification, showing position of the hair cells on the basement membrane. Organ of corti.svg
Cross-section through the spiral organ of Corti at greater magnification, showing position of the hair cells on the basement membrane.

The organ of Corti is located in the scala media of the cochlea of the inner ear between the vestibular duct and the tympanic duct and is composed of mechanosensory cells, known as hair cells. [2] Strategically positioned on the basilar membrane of the organ of Corti are three rows of outer hair cells (OHCs) and one row of inner hair cells (IHCs). [4] Surrounding these hair cells are supporting cells: Deiters cells, also called phalangeal cells, which have a close relation with the OHCs, and pillar cells, which separate and support both the OHCs and the IHCs. [4]

Projecting from the tops of the hair cells are tiny finger-like projections called stereocilia, which are arranged in a graduated fashion with the shortest stereocilia on the outer rows and the longest in the center. This gradation is thought to be the most important anatomic feature of the organ of Corti because this allows the sensory cells superior tuning capability. [5]

If the cochlea were uncoiled, it would roll out to be about 33 mm long in women and 34 mm in men, with about 2.28 mm of standard deviation for the population. [6] The cochlea is also tonotopically organized, meaning that different frequencies of sound waves interact with different locations on the structure. The base of the cochlea, closest to the outer ear, is the most stiff and narrow and is where the high-frequency sounds are transduced. The apex, or top, of the cochlea is wider and much more flexible and loose and functions as the transduction site for low-frequency sounds. [7]

Function

Image showing the outer ear, middle ear, and inner ear, and how sound is conducted through the outer ear, to the ossicles of the middle ear, through to the inner ear and the cochlea, where the organ of Corti sits. Anatomy of the Human Ear.svg
Image showing the outer ear, middle ear, and inner ear, and how sound is conducted through the outer ear, to the ossicles of the middle ear, through to the inner ear and the cochlea, where the organ of Corti sits.

The function of the organ of Corti is to convert (transduce) sounds into electrical signals that can be transmitted to the brainstem through the auditory nerve. [2] It is the auricle and middle ear that act as mechanical transformers and amplifiers so that the sound waves end up with amplitudes 22 times greater than when they entered the ear.

Auditory transduction

In normal hearing, the majority of the auditory signals that reach the organ of Corti in the first place come from the outer ear. Sound waves enter through the auditory canal and vibrate the tympanic membrane, also known as the eardrum, which vibrates three small bones called the ossicles. As a result, the attached oval window moves and causes movement of the round window, which leads to displacement of the cochlear fluid. [8] However, the stimulation can happen also via direct vibration of the cochlea from the skull. The latter is referred to as Bone Conduction (or BC) hearing, as complementary to the first one described, which is instead called Air Conduction (or AC) hearing. Both AC and BC stimulate the basilar membrane in the same way (Békésy, G.v., Experiments in Hearing. 1960).

The basilar membrane on the tympanic duct presses against the hair cells of the organ as perilymphatic pressure waves pass. The stereocilia atop the IHCs move with this fluid displacement and in response their cation, or positive ion selective, channels are pulled open by cadherin structures called tip links that connect adjacent stereocilia. [9] The organ of Corti, surrounded in potassium-rich fluid endolymph, lies on the basilar membrane at the base of the scala media. Under the organ of Corti is the scala tympani and above it, the scala vestibuli. Both structures exist in a low potassium fluid called perilymph. [8] Because those stereocilia are in the midst of a high concentration of potassium, once their cation channels are pulled open, potassium ions as well as calcium ions flow into the top of the hair cell. With this influx of positive ions the IHC becomes depolarized, opening voltage-gated calcium channels at the basolateral region of the hair cells and triggering the release of the neurotransmitter glutamate. An electrical signal is then sent through the auditory nerve and into the auditory cortex of the brain as a neural message.

Cochlear amplification

The organ of Corti is also capable of modulating the auditory signal. [7] The outer hair cells (OHCs) can amplify the signal through a process called electromotility where they increase movement of the basilar and tectorial membranes and therefore increase deflection of stereocilia in the IHCs. [8] [10] [11]

A crucial piece to this cochlear amplification is the motor protein prestin, which changes shape based on the voltage potential inside of the hair cell. When the cell is depolarized, prestin shortens, and because it is located on the membrane of OHCs it then pulls on the basilar membrane and increasing how much the membrane is deflected, creating a more intense effect on the inner hair cells (IHCs). When the cell hyperpolarizes prestin lengthens and eases tension on the IHCs, which decreases the neural impulses to the brain. In this way, the hair cell itself is able to modify the auditory signal before it even reaches the brain.

Development

The organ of Corti, in between the scala tympani and the scala media, develops after the formation and growth of the cochlear duct. [7] The inner and outer hair cells then differentiate into their appropriate positions and are followed by the organization of the supporting cells. The topology of the supporting cells lends itself to the actual mechanical properties that are needed for the highly specialized sound-induced movements within the organ of Corti. [7]

Development and growth of the organ of Corti relies on specific genes, many of which have been identified in previous research (SOX2, GATA3, EYA1, FOXG1, BMP4, RAC1, and more), [7] to undergo such differentiation. Specifically, the cochlear duct growth and the formation of hair cells within the organ of Corti.

Mutations in the genes expressed in or near the organ of Corti before the differentiation of hair cells will result in a disruption in the differentiation, and potential malfunction of, the organ of Corti.

Clinical significance

Hearing loss

The organ of Corti can be damaged by excessive sound levels, leading to noise-induced impairment. [12]

The most common kind of hearing impairment, sensorineural hearing loss, includes as one major cause the reduction of function in the organ of Corti. Specifically, the active amplification function of the outer hair cells is very sensitive to damage from exposure to trauma from overly-loud sounds or to certain ototoxic drugs. Once outer hair cells are damaged, they do not regenerate, and the result is a loss of sensitivity and an abnormally large growth of loudness (known as recruitment) in the part of the spectrum that the damaged cells serve. [13]

While hearing loss has always been considered irreversible in mammals, fish and birds routinely repair such damage. A 2013 study has shown that the use of particular drugs may reactivate genes normally expressed only during hair cell development. The research was carried out at Harvard Medical School, Massachusetts Eye and Ear, and the Keio University School of Medicine in Japan. [14] [15]

Additional images

Notes

  1. Hudspeth, A (2014). "Integrating the active process of hair cells with cochlear function". Nature Reviews Neuroscience. 15 (9): 600–614. doi:10.1038/nrn3786. PMID   25096182. S2CID   3716179.
  2. 1 2 3 The Ear Pujol, R., Irving, S., 2013
  3. Betlejewski, S (2008). "Science and life – the history of Marquis Alfonso Corti". Otolaryngologia Polska. 62 (3): 344–347. doi:10.1016/S0030-6657(08)70268-3. PMID   18652163.
  4. 1 2 Malgrange, B; Van de Water, T.R; Nguyen, L; Moonen, G; Lefebvre, P.P (2002). "Epithelial supporting cells can differentiate into outer hair cells and Deiters' cells in the cultured organ of Corti". Cellular and Molecular Life Sciences. 59 (10): 1744–1757. doi:10.1007/pl00012502. PMID   12475185. S2CID   2962483.
  5. Lim, D (1986). "Functional structure of the organ of Corti: a review". Hearing Research. 22 (1–3): 117–146. doi:10.1016/0378-5955(86)90089-4. PMID   3525482. S2CID   4764624.
  6. Miller, J. D. (2007). "Sex differences in the length of the organ of Corti in humans". The Journal of the Acoustical Society of America. 121 (4): EL151-5. Bibcode:2007ASAJ..121L.151M. doi: 10.1121/1.2710746 . PMID   17471760.
  7. 1 2 3 4 5 Fritzsch, B; Jahan, I; Pan, N; Kers, J; Duncan, J; Kopecky, B (2012). "Dissecting the molecular basis of organ of Corti development: where are we now?". Hearing Research. 276 (1–2): 16–26. doi:10.1016/j.heares.2011.01.007. PMC   3097286 . PMID   21256948.
  8. 1 2 3 Nichols, J.G; Martin, A.R.; Fuchs, P.A; Brown, D.A; Diamond, M.E; Weisblat, D.A (2012). From Neuron to Brain, 5th Edition. Sunderland, MA: Sinauer Associates, Inc. pp. 456–459. ISBN   978-0-87893-609-0.
  9. Müller, Ulrich; Gillespie, Peter G.; Williams, David S.; Reynolds, Anna; Dumont, Rachel A.; Lillo, Concepcion; Siemens, Jan (April 2004). "Cadherin 23 is a component of the tip link in hair-cell stereocilia". Nature. 428 (6986): 950–955. Bibcode:2004Natur.428..950S. doi:10.1038/nature02483. ISSN   1476-4687. PMID   15057245. S2CID   3506274.
  10. Ashmore, Jonathan Felix (1987). "A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier". The Journal of Physiology . 388 (1): 323–347. doi:10.1113/jphysiol.1987.sp016617. ISSN   1469-7793. PMC   1192551 . PMID   3656195. Open Access logo PLoS transparent.svg
  11. Ashmore, Jonathan (2008). "Cochlear Outer Hair Cell Motility". Physiological Reviews . 88 (1): 173–210. doi:10.1152/physrev.00044.2006. ISSN   0031-9333. PMID   18195086. S2CID   17722638. Open Access logo PLoS transparent.svg
  12. Lim, David J. (March 1986). "Effects of noise and ototoxic drugs at the cellular level in the cochlea: A review". American Journal of Otolaryngology. 7 (2): 73–99. doi:10.1016/S0196-0709(86)80037-0. PMID   3515985.
  13. Robert A. Dobie (2001). Medical-Legal Evaluation of Hearing Loss. Thomson Delmar Learning. ISBN   0-7693-0052-9.
  14. "Cochlear hair cells - Beyond the Dish". wordpress.com.
  15. Askew, Charles; Rochat, Cylia; Pan, Bifeng; Asai, Yukako; Ahmed, Hena; Child, Erin; Schneider, Bernard L.; Aebischer, Patrick; Holt, Jeffrey R. (8 July 2015). "Tmc gene therapy restores auditory function in deaf mice". Science Translational Medicine . 7 (295): 295ra108. doi:10.1126/scitranslmed.aab1996. ISSN   1946-6234. PMC   7298700 . PMID   26157030.

Related Research Articles

<span class="mw-page-title-main">Inner ear</span> Innermost part of the vertebrate ear

The inner ear is the innermost part of the vertebrate ear. In vertebrates, the inner ear is mainly responsible for sound detection and balance. In mammals, it consists of the bony labyrinth, a hollow cavity in the temporal bone of the skull with a system of passages comprising two main functional parts:

<span class="mw-page-title-main">Cochlea</span> Snail-shaped part of inner ear involved in hearing

The cochlea is the part of the inner ear involved in hearing. It is a spiral-shaped cavity in the bony labyrinth, in humans making 2.75 turns around its axis, the modiolus. A core component of the cochlea is the organ of Corti, the sensory organ of hearing, which is distributed along the partition separating the fluid chambers in the coiled tapered tube of the cochlea.

<span class="mw-page-title-main">Basilar membrane</span> Stiff structural element within the cochlea of the inner ear which separates two liquid-filled tubes

The basilar membrane is a stiff structural element within the cochlea of the inner ear which separates two liquid-filled tubes that run along the coil of the cochlea, the scala media and the scala tympani. The basilar membrane moves up and down in response to incoming sound waves, which are converted to traveling waves on the basilar membrane.

<span class="mw-page-title-main">Auditory system</span> Sensory system used for hearing

The auditory system is the sensory system for the sense of hearing. It includes both the sensory organs and the auditory parts of the sensory system.

<span class="mw-page-title-main">Hair cell</span> Auditory sensory receptor nerve cells

Hair cells are the sensory receptors of both the auditory system and the vestibular system in the ears of all vertebrates, and in the lateral line organ of fishes. Through mechanotransduction, hair cells detect movement in their environment.

<span class="mw-page-title-main">Sensorineural hearing loss</span> Hearing loss caused by an inner ear or vestibulocochlear nerve defect

Sensorineural hearing loss (SNHL) is a type of hearing loss in which the root cause lies in the inner ear or sensory organ or the vestibulocochlear nerve. SNHL accounts for about 90% of reported hearing loss. SNHL is usually permanent and can be mild, moderate, severe, profound, or total. Various other descriptors can be used depending on the shape of the audiogram, such as high frequency, low frequency, U-shaped, notched, peaked, or flat.

Presbycusis, or age-related hearing loss, is the cumulative effect of aging on hearing. It is a progressive and irreversible bilateral symmetrical age-related sensorineural hearing loss resulting from degeneration of the cochlea or associated structures of the inner ear or auditory nerves. The hearing loss is most marked at higher frequencies. Hearing loss that accumulates with age but is caused by factors other than normal aging is not presbycusis, although differentiating the individual effects of distinct causes of hearing loss can be difficult.

In audiology and psychoacoustics the concept of critical bands, introduced by Harvey Fletcher in 1933 and refined in 1940, describes the frequency bandwidth of the "auditory filter" created by the cochlea, the sense organ of hearing within the inner ear. Roughly, the critical band is the band of audio frequencies within which a second tone will interfere with the perception of the first tone by auditory masking.

<span class="mw-page-title-main">Stereocilia (inner ear)</span> Mechanosensing organelles of hair cells

In the inner ear, stereocilia are the mechanosensing organelles of hair cells, which respond to fluid motion in numerous types of animals for various functions, including hearing and balance. They are about 10–50 micrometers in length and share some similar features of microvilli. The hair cells turn the fluid pressure and other mechanical stimuli into electric stimuli via the many microvilli that make up stereocilia rods. Stereocilia exist in the auditory and vestibular systems.

<span class="mw-page-title-main">Prestin</span> Protein-coding gene in the species Homo sapiens

Prestin is a protein that is critical to sensitive hearing in mammals. It is encoded by the SLC26A5 gene.

<span class="mw-page-title-main">Tympanic duct</span>

The tympanic duct or scala tympani is one of the perilymph-filled cavities in the inner ear of humans. It is separated from the cochlear duct by the basilar membrane, and it extends from the round window to the helicotrema, where it continues as vestibular duct.

<span class="mw-page-title-main">Cochlear duct</span> Cavity in the cochlea of the inner ear

The cochlear duct is an endolymph filled cavity inside the cochlea, located between the tympanic duct and the vestibular duct, separated by the basilar membrane and the vestibular membrane respectively. The cochlear duct houses the organ of Corti.

<span class="mw-page-title-main">Tectorial membrane</span>

The tectoria membrane (TM) is one of two acellular membranes in the cochlea of the inner ear, the other being the basilar membrane (BM). "Tectorial" in anatomy means forming a cover. The TM is located above the spiral limbus and the spiral organ of Corti and extends along the longitudinal length of the cochlea parallel to the BM. Radially the TM is divided into three zones, the limbal, middle and marginal zones. Of these the limbal zone is the thinnest (transversally) and overlies the auditory teeth of Huschke with its inside edge attached to the spiral limbus. The marginal zone is the thickest (transversally) and is divided from the middle zone by Hensen's Stripe. It overlies the sensory inner hair cells and electrically-motile outer hair cells of the organ of Corti and during acoustic stimulation stimulates the inner hair cells through fluid coupling, and the outer hair cells via direct connection to their tallest stereocilia.

<span class="mw-page-title-main">Hearing</span> Sensory perception of sound by living organisms

Hearing, or auditory perception, is the ability to perceive sounds through an organ, such as an ear, by detecting vibrations as periodic changes in the pressure of a surrounding medium. The academic field concerned with hearing is auditory science.

The cochlear amplifier is a positive feedback mechanism within the cochlea that provides acute sensitivity in the mammalian auditory system. The main component of the cochlear amplifier is the outer hair cell (OHC) which increases the amplitude and frequency selectivity of sound vibrations using electromechanical feedback.

The neural encoding of sound is the representation of auditory sensation and perception in the nervous system. The complexities of contemporary neuroscience are continually redefined. Thus what is known of the auditory system has been continually changing. The encoding of sounds includes the transduction of sound waves into electrical impulses along auditory nerve fibers, and further processing in the brain.

Auditory fatigue is defined as a temporary loss of hearing after exposure to sound. This results in a temporary shift of the auditory threshold known as a temporary threshold shift (TTS). The damage can become permanent if sufficient recovery time is not allowed before continued sound exposure. When the hearing loss is rooted from a traumatic occurrence, it may be classified as noise-induced hearing loss, or NIHL.

Electrocochleography is a technique of recording electrical potentials generated in the inner ear and auditory nerve in response to sound stimulation, using an electrode placed in the ear canal or tympanic membrane. The test is performed by an otologist or audiologist with specialized training, and is used for detection of elevated inner ear pressure or for the testing and monitoring of inner ear and auditory nerve function during surgery.

Cochlea is Latin for “snail, shell or screw” and originates from the Greek word κοχλίας kokhlias. The modern definition, the auditory portion of the inner ear, originated in the late 17th century. Within the mammalian cochlea exists the organ of Corti, which contains hair cells that are responsible for translating the vibrations it receives from surrounding fluid-filled ducts into electrical impulses that are sent to the brain to process sound.

<span class="mw-page-title-main">Hensen's cell</span>

Hensen's cells are a layer of tall cells arranged in the organ of Corti in the cochlea, which are part of the supporting cells lie on the outer hair cells (OHC). Their appearance are upper part wide with lower part narrow, column like cells. One significant morphologic feature of Hensen's cells is the lipid droplets, which are most noticeable at the third and forth turns of the cochlear, the lipid droplets are thought to have association with the auditory process because they are parallel to the innervation. One significant structure found among the Hensen's cells and the hair cells are the gap junctions, they are made of connexins which serve important function in distribution and connection between cells, the gaps enable the long distance of electric communication.

References

History. (n.d.).

See also